Lesson 1: Introducing likelihoods

Victor Jauregui

October 3, 2021

Uncertainty vs likelihoods

Example (River deliveries)
Alice has to deliver one package to C every day for some future period. Records show that the ferry was operating on 75 of the last 100 days.

‘One shot’ decision
Future period = one day (fuel consumed):

<table>
<thead>
<tr>
<th>f</th>
<th>f</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
How to choose?

Fuel saved (4L tank):

<table>
<thead>
<tr>
<th>$\frac{1}{4}$</th>
<th>$\frac{3}{4}$</th>
<th>E</th>
<th>min</th>
<th>maxL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{f}$</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>4</td>
<td>3.0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>3</td>
<td>2.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Short to long term

<table>
<thead>
<tr>
<th>$\frac{1}{16}$</th>
<th>$\frac{3}{16}$</th>
<th>$\frac{3}{16}$</th>
<th>$\frac{9}{16}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{ff}$</td>
<td>$\frac{3}{ff}$</td>
<td>$\frac{3}{ff}$</td>
<td>$\frac{9}{ff}$</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\frac{1}{16}$</th>
<th>$\frac{6}{16}$</th>
<th>$\frac{9}{16}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{ff}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{f}$</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\frac{17}{4}$</th>
<th>$\frac{3}{4}$f</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.0</td>
</tr>
<tr>
<td>B</td>
<td>2.5</td>
</tr>
</tbody>
</table>