12. Exponential Time Hypothesis
COMP6741: Parameterized and Exact Computation
Serge Gaspers
Semester 2, 2017

Contents

1 SAT and k-SAT 1
2 Subexponential time algorithms 2
3 ETH and SETH 2
4 Algorithmic lower bounds based on ETH 2
5 Algorithmic lower bounds based on SETH 3
6 Further Reading 4

1 SAT and k-SAT

SAT

Input: A propositional formula F in conjunctive normal form (CNF)
Parameter: $n = |\text{var}(F)|$, the number of variables in F
Question: Is there an assignment to $\text{var}(F)$ satisfying all clauses of F?

k-SAT

Input: A CNF formula F where each clause has length at most k
Parameter: $n = |\text{var}(F)|$, the number of variables in F
Question: Is there an assignment to $\text{var}(F)$ satisfying all clauses of F?

Example:

$$(x_1 \lor x_2) \land (\neg x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

Algorithms for SAT

- Brute-force: $O^*(2^n)$
- ... after > 50 years of SAT solving (SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)
- fastest known algorithm for SAT: $O^*(2^{n^{(1-1/O(\log m/n))}})$, where m is the number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]
- However: no $O^*(1.9999^n)$ time algorithm is known
• fastest known algorithms for 3-SAT: $O^*(1.3303^n)$ deterministic [Makino, Tamaki, Yamamoto, 2013] and $O^*(1.3071^n)$ randomized [Hertli, 2014]

• Could it be that 3-SAT cannot be solved in $2^{o(n)}$ time?

• Could it be that SAT cannot be solved in $O^*((2 - \epsilon)^n)$ time for any $\epsilon > 0$?

2 Subexponential time algorithms

NP-hard problems in subexponential time?

• Are there any NP-hard problems that can be solved in $2^{o(n)}$ time?

• Yes. For example, INDEPENDENT SET is NP-complete even when the input graph is planar (can be drawn in the plane without edge crossings). Planar graphs have treewidth $O(\sqrt{n})$ and tree decompositions of that width can be found in polynomial time (“Planar separator theorem” [Lipton, Tarjan, 1979]). Using a tree decomposition based algorithm, INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time on planar graphs.

3 ETH and SETH

Definition 1. For each $k \geq 3$, define δ_k to be the infinimum\(^1\) of the set of constants c such that k-SAT can be solved in $O^*(2^{c \cdot n})$ time.

Conjecture 2 (Exponential Time Hypothesis (ETH)). $\delta_3 > 0$.

Conjecture 3 (Strong Exponential Time Hypothesis (SETH)). $\lim_{k \to \infty} \delta_k = 1$.

Notes: (1) ETH \Rightarrow 3-SAT cannot be solved in $2^{o(n)}$ time. SETH \Rightarrow SAT cannot be solved in $O^*((2 - \epsilon)^n)$ time for any $\epsilon > 0$.

4 Algorithmic lower bounds based on ETH

• Suppose ETH is true

• Can we infer lower bounds on the running time needed to solve other problems?

• Suppose there is a polynomial-time reduction from 3-SAT to a graph problem Π, which constructs an equivalent instance where the number of vertices of the output graph equals the number of variables of the input formula, $|V| = |\text{var}(F)|$.

• Using the reduction, we can conclude that, if Π has an $O^*(2^{o(|V|)})$ time algorithm, then 3-SAT has an $O^*(2^{o(|\text{var}(F)|)})$ time algorithm, contradicting ETH.

• Therefore, we conclude that Π has no $O^*(2^{o(|V|)})$ time algorithm unless ETH fails.

Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables / elements that are related to the number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma, [Impagliazzo, Paturi, Zane, 2001]). For each $\epsilon > 0$ and positive integer k, there is a $O^*(2^{\epsilon n})$ time algorithm that takes as input a k-CNF formula F with n variables and outputs an equivalent formula $F' = \bigvee_{i=1}^{t} F_i$ that is a disjunction of $t \leq 2^{\epsilon n}$ formulas F_i with $\text{var}(F_i) = \text{var}(F)$ and $|\text{cla}(F_i)| = O(n)$.

\(^1\)The infinimum of a set of numbers is the largest number that is smaller or equal to each number in the set. E.g., the infinimum of $\{\epsilon \in \mathbb{R} : \epsilon > 0\}$ is 0.
Corollary 5. \(\text{ETH} \Rightarrow 3 \text{-SAT cannot be solved in } O^*(2^{o(n+m)}) \text{ time where } m \text{ denotes the number of clauses of } F. \)

Observation: Let \(A, B \) be parameterized problems and \(f, g \) be non-decreasing functions. Suppose there is a polynomial-parameter transformation from \(A \) to \(B \) such that if the parameter of an instance of \(A \) is \(k \), then the parameter of the constructed instance of \(B \) is at most \(g(k) \). Then an \(O^*(2^{o(f(k))}) \) time algorithm for \(B \) implies an \(O^*(2^{o(g(f(k)))}) \) time algorithm for \(A \).

More general reductions are possible

Definition 6 (SERF-reduction). A SubExponential Reduction Family from a parameterized problem \(A \) to a parameterized problem \(B \) is a family of Turing reductions from \(A \) to \(B \) (i.e., an algorithm for \(A \), making queries to an oracle for \(B \) that solves any instance for \(B \) in constant time) for each \(\varepsilon > 0 \) such that

- for every instance \(I \) for \(A \) with parameter \(k \), the running time is \(O^*(2^{\varepsilon k}) \), and
- for every query \(I' \) to \(B \) with parameter \(k' \), we have that \(k' \in O(k) \) and \(|I'| = |I|^{O(1)} \).

Note: If \(A \) is SERF-reducible to \(B \) and \(A \) has no \(2^{o(k)} \) time algorithm, then \(B \) has no \(2^{o(k')} \) time algorithm.

Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.

For simplicity, assume all clauses have length 3.

3-CNF Formula \(F = (u \lor v \lor \neg y) \land (\neg u \lor y \lor z) \land (\neg y \lor w \lor x) \land (x \lor y \lor \neg z) \)

For a 3-CNF formula with \(n \) variables and \(m \) clauses, we create a VERTEX COVER instance with \(|V| = 2n + 3m \), \(|E| = n + 6m \), and \(k = n + 2m \).

Theorem 7. \(\text{ETH} \Rightarrow \text{VERTEX COVER has no } 2^{o(|V|)} \text{ time algorithm.} \)

Theorem 8. \(\text{ETH} \Rightarrow \text{VERTEX COVER has no } 2^{o(|E|)} \text{ time algorithm.} \)

Theorem 9. \(\text{ETH} \Rightarrow \text{VERTEX COVER has no } 2^{o(k)} \text{ time algorithm.} \)

5 Algorithmic lower bounds based on SETH

Hitting Set

Recall: A hitting set of a set system \(S = (V, H) \) is a subset \(X \) of \(V \) such that \(X \) contains at least one element of each set in \(H \), i.e., \(X \cap Y \neq \emptyset \) for each \(Y \in H \).

<table>
<thead>
<tr>
<th>\text{elts-Hitting Set}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A set system (S = (V, H)) and an integer (k)</td>
</tr>
<tr>
<td>Parameter: (n =</td>
</tr>
<tr>
<td>Question: Does (S) have a hitting set of size at most (k)?</td>
</tr>
</tbody>
</table>
SETH-lower bound for Hitting Set

CNF Formula $F = (u \lor v \lor \neg y) \land (\neg u \lor y \lor z) \land (\neg v \lor w \lor x) \land (x \lor y \lor \neg z)$

Inidence graph of equivalent Hitting Set instance:

For a CNF formula with n variables and m clauses, we create a Hitting Set instance with $|V| = 2n$ and $k = n$.

Theorem 10. SETH \Rightarrow Hitting Set has no $O^*((2 - \varepsilon)^{|V|/2})$ time algorithm for any $\varepsilon > 0$.

Note: With a more ingenious reduction, one can show that Hitting Set has no $O^*((2 - \varepsilon)^{|V|})$ time algorithm for any $\varepsilon > 0$ under SETH.

Exercise

A dominating set of a graph $G = (V,E)$ is a set of vertices $S \subseteq V$ such that $N_G[S] = V$.

vertex-Dominating Set

<table>
<thead>
<tr>
<th>Input</th>
<th>A graph $G = (V,E)$ and an integer k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>$n =</td>
</tr>
<tr>
<td>Question</td>
<td>Does G have a dominating set of size at most k?</td>
</tr>
</tbody>
</table>

- Prove that ETH \Rightarrow vertex-Dominating Set has no $2^{o(n)}$ time algorithm.

Solution idea

Reduce from 3-SAT. For each $x \in \text{var}(F)$, create a triangle with vertices x, $\neg x$ and d_x. For each $c \in \text{cla}(F)$, create a vertex c adjacent to all the vertices whose corresponding literals are contained in the clause c.

6 Further Reading