Welcomel
COMP1511 18s1

Programming Fundamentals

COMP1511 18s1
— Lecture 17 —
Linked Lists

Andrew Bennett

<andrew.bennett@unsw.edu.au>

after this lecture, you should be able to...

have a better understanding of linked lists
write code to create a linked list
write code to traverse a linked list

solve simple problems using linked lists

(note: you shouldn’t be able to do all of these immediately after watching this lecture. however, this lecture should (hopefully!) give you the foundations you need to develop these skills. remember: programming is

like learning any other language, it takes consistent and regular practice.)

Don't panic!

assignment 2

(if you haven't started yet, start ASAP)
deadline extended to Sunday 13th May

assignment 1

tutor marking/feedback in progress
week 9 weekly test out now

don't forget about help sessions!

see course website for details

Help Sessions

Wednesday
6-8pm, J17 201

Thursday
6-8pm, J17 201

Friday
10am-12pm, Brass Lab (J17 Level 3)
2pm-4pm, Brass Lab (J17 Level 3)
4pm-6pm, Oboe Lab (J17 Level 3)

note: Brass Lab = Bugle/Horn

a quick recap of yesterday

The node struct

struct node {
int data;
struct node *next;

Interacting with a node struct

struct node {
int data;
struct node *next;

struct node hello;
hello.data = 10;
hello.next =

Making a new node

struct node *make node(int value) {
struct node *new = malloc(l * sizeof(struct node));
new->data = value;
new->next = ;
return new;

struct node *hello = make_node(10);

Freeing a node

// In accordance with Newton's 3rd Law of Memory Allocation
// "For every malloc, there is an equal and opposite free"
void free node(struct node *node) {

free(node) ;

struct node *hello = make node(10);
free node(hello);

Node pointers vs allocated nodes

reference to a node

arrow

E struct node *curr ... }

VS

making (allocating) a new node

circle

E ... = malloc(l * sizeof(struct node)); }

Node pointers vs allocated nodes

reference to a node

arrow

E struct node *curr ... }

VS

making (allocating) a new node

circle

E ... = malloc(l * sizeof(struct node)); }

Yract nod
ok node = ST eds

Cu((e—ﬂ

Node pointers vs allocated nodes

reference to a node (arrow) vs
making (allocating) a new node (circle)

Shrack node x Struct node

= (O
cu(y

(“ o {f“,.' | '”‘) Memofy alleated
[oﬂ e

Struck node # cuir = malloc (Lxsizeof (shiuck naﬁ@

array/list “traversal”

(going through every element)

Traversing... an Array

void fillArray (int array[ARRAY _SIZE], int value) {
int i = 0;
while (i < ARRAY_SIZE) {
array[i] = value; // set the value
1++; // move to next element

Traversing... a Linked List

void filllList (struct node *1list, int value) {
struct node *curr = list;
while (curr !=) |
curr->data = value; // set the value
curr = curr->next; // move to next node

and now for today’s content...

The Standard List Loop

struct node *curr = list;

while (curr !=) |

curr = curr->next,

The Stand

ard List Loop — List Length

How can we calculate the length of a list?

i.e. how many nodes are in the list

struct node *curr = list;

int num_nodes = 0;

while (curr !=) |

num_nodes += 1;

curr = curr->next,

How can we sum all of the elements in a list?

i.e. add the values of all of the nodes together

struct node *curr =

)

list;

{

curr = curr->next,

Inserting Into a List

adding new nodes to our list....

insert at the start

insert at the end

insert in the middle

An aside: When things go wrong

what if our list is empty?

what would this look like in code?

An aside: Function Comments

it's important to document your functions:

what do they assume?

what does the caller need to do?

Building Blocks

we can construct complex list operations out of simple functions

