Christoph Schwering

UNSW Sydney

COMP4418, Week 9

- McCarthy's Advice Taker
 - Improve program behaviour by making statements to it
 - Program draws conclusions from its knowledge
 - Declarative conclusion: new knowledge
 - Imperative conclusion: take action

- McCarthy's Advice Taker
 - Improve program behaviour by making statements to it
 - Program draws conclusions from its knowledge
 - Declarative conclusion: new knowledge
 - Imperative conclusion: take action
- Actions change the environment, modify fluents
 - When you get on a bus, you are on the bus
 - When you get off a bus, you are not on the bus
 - When a bus moves, the position of the passengers changes

- McCarthy's Advice Taker
 - Improve program behaviour by making statements to it
 - Program draws conclusions from its knowledge
 - Declarative conclusion: new knowledge
 - Imperative conclusion: take action
- Actions change the environment, modify fluents
 - When you get on a bus, you are on the bus
 - When you get off a bus, you are not on the bus
 - When a bus moves, the position of the passengers changes
- Want to model such environments
 - Action theory that models the actions and fluents
 - What does this theory entail?

Overview of the Lecture

- Three Problems
- The Situation Calculus
- Projection by regression
- Projection by progression
- Knowledge and sensing
- Concluding words

Three Problems

Commonsense problems, seemingly easy, yet very hard to formalise:

- 1. The Qualification Problem
- 2. The Frame Problem
- 3. The Ramification Problem

An action can only be executed under certain circumstances.

An action can only be executed under certain circumstances.

The Qualification Problem

Represent the preconditions (qualifications) of an action.

An action can only be executed under certain circumstances.

The Qualification Problem

Represent the preconditions (qualifications) of an action.

Ex.: You want to take a bus b to get to a destination d.

An action can only be executed under certain circumstances.

The Qualification Problem

Represent the preconditions (qualifications) of an action.

<u>Ex.</u>: You want to take a bus b to get to a destination d.

- Some qualifications are more important than others
 - ▶ Important qualification: d is on b's route
 - Minor qualification: fuel, driver, keys, . . .

An action can only be executed under certain circumstances.

The Qualification Problem

Represent the preconditions (qualifications) of an action.

<u>Ex.</u>: You want to take a bus b to get to a destination d.

- Some qualifications are more important than others
 - ightharpoonup Important qualification: d is on b's route
 - Minor qualification: fuel, driver, keys, ...
- Impractical to list all minor preconditions

An action can only be executed under certain circumstances.

The Qualification Problem

Represent the preconditions (qualifications) of an action.

<u>Ex.</u>: You want to take a bus b to get to a destination d.

- Some qualifications are more important than others
 - ▶ Important qualification: *d* is on *b*'s route
 - Minor qualification: fuel, driver, keys, ...
- Impractical to list all minor preconditions
- Non-monotonic reasoning
 - Action is possible when all important qualifications hold, unless a minor qualification prevents it
 - Not specific to actions: a bird flies unless it's abnormal

Most fluents are not affected by an action.

Most fluents are not affected by an action.

The Frame Problem

Represent what is left unchanged by an action (frame axioms).

Most fluents are not affected by an action.

The Frame Problem

Represent what is left unchanged by an action (frame axioms).

<u>Ex.</u>: You don't magically disappear from the bus when it moves. The weather also remains unchanged when the bus moves.

Most fluents are not affected by an action.

The Frame Problem

Represent what is left unchanged by an action (frame axioms).

<u>Ex.</u>: You don't magically disappear from the bus when it moves. The weather also remains unchanged when the bus moves.

- Frame axioms specify what does not change
 - ▶ If you are on a bus, then you're still on the bus when it moves.
 - ▶ If you are not on a bus, then you're still not on the bus when it moves.

Most fluents are not affected by an action.

The Frame Problem

Represent what is left unchanged by an action (frame axioms).

Ex.: You don't magically disappear from the bus when it moves.

The weather also remains unchanged when the bus moves.

- Frame axioms specify what does *not* change
 - ▶ If you are on a bus, then you're still on the bus when it moves.
 - If you are not on a bus, then you're still not on the bus when it moves.
- \blacksquare A actions, F fluents \implies about 2 × A × F frame axioms
 - ightharpoonup 100 actions, 100 fluents \implies 20 000 frame axioms
 - Impractical to write down
 - Need to generate them or represent them implicitly

State constraints must be satisfied over the course of actions.

State constraints must be satisfied over the course of actions.

The Ramification Problem

Represent indirect effects caused by state constraints.

State constraints must be satisfied over the course of actions.

The Ramification Problem

Represent indirect effects caused by state constraints.

<u>Ex.</u>: If you're on the bus, your location is where the bus is.

You cannot be at two busses at once.

State constraints must be satisfied over the course of actions.

The Ramification Problem

Represent indirect effects caused by state constraints.

<u>Ex.</u>: If you're on the bus, your location is where the bus is.

You cannot be at two busses at once.

■ Indirect effect: action effects must adhere to state constraints

State constraints must be satisfied over the course of actions.

The Ramification Problem

Represent indirect effects caused by state constraints.

<u>Ex.</u>: If you're on the bus, your location is where the bus is.

You cannot be at two busses at once.

- Indirect effect: action effects must adhere to state constraints
- Indirect qualification: action allowed only if state constraint won't be violated

State constraints must be satisfied over the course of actions.

The Ramification Problem

Represent indirect effects caused by state constraints.

<u>Ex.</u>: If you're on the bus, your location is where the bus is.

You cannot be at two busses at once.

- Indirect effect: action effects must adhere to state constraints
- Indirect qualification: action allowed only if state constraint won't be violated
- Constraints can often be compiled to qualifications, effects
 - When a bus moves, its passengers move along
 - You can get on a bus only if you're not on a bus already

Our Approach (due to Ray Reiter)

We'll focus on the **frame problem**.

The Frame Problem

Represent what is left unchanged by an action.

- Simple solution to the frame problem due to Reiter:
 - F holds after $a \iff a$ enables F or

F holds before a and a does not disable F

- Ignore the minor qualifications
- Compile state constraints to qualifications and effects

Want: a way to generate frame axioms from given effect axioms. Why?

- Modularity: could easily add new fluents / actions
- Accuracy: wouldn't forget frame axioms

Overview of the Lecture

- Three Problems
- The Situation Calculus
- Projection by regression
- Projection by progression
- Knowledge and sensing
- Concluding words

Terms of two different sorts:

 \blacksquare Variables, standard names, functions of sort $\begin{cases} \text{object} \\ \text{action} \end{cases}$

Terms of two different sorts:

- Variables, standard names, functions of sort { object action
 For simplicity: no nested functions, function only on left-hand
- For simplicity: no nested functions, function only on left-hand side
- Special condition: action term $A(n_1, ..., n_j)$ is standard name

Terms of two different sorts:

- Variables, standard names, functions of sort { object action
 For simplicity: no nested functions, function only on left-hand
- For simplicity: no nested functions, function only on left-hand side
- Special condition: action term $A(n_1, ..., n_j)$ is standard name

 $\underline{\text{Ex.}}$: If M50 is an object standard name and getOn is an action function, then getOn(M50) is an action standard name.

Terms of two different sorts:

- Variables, standard names, functions of sort { object action
 For simplicity: no nested functions, function only on left-hand
- For simplicity: no nested functions, function only on left-hand side
- lacksquare Special condition: action term $A(n_1,\ldots,n_j)$ is standard name

<u>Ex.</u>: If M50 is an object standard name and getOn is an action function, then getOn(M50) is an action standard name. Then \models getOn(M50) \neq getOff \neq goTo(M50, Uni) \neq . . .!

Terms of two different sorts:

- Variables, standard names, functions of sort { object action
- For simplicity: no nested functions, function only on left-hand side
- lacksquare Special condition: action term $A(n_1,\ldots,n_j)$ is standard name

<u>Ex.</u>: If M50 is an object standard name and getOn is an action function, then getOn(M50) is an action standard name. Then \models getOn(M50) \neq getOff \neq goTo(M50, Uni) \neq . . .!

Formulas:

$$P(t_1,\ldots,t_j) \quad t_1=t_2 \quad \neg \alpha \quad (\alpha \vee \beta) \quad \exists x \, \alpha$$

- $[t] \alpha$ α holds after action t
- $\blacksquare \ \square \ \alpha$ holds after any sequence of actions
- Predicate Poss(t) represents precondition of action t

You don't fall off the bus when the bus moves:

$$\square \left(\forall b_1 \forall b_2 \forall d \left(\mathsf{On}(b_1) \to [\mathsf{goTo}(b_2, d)] \mathsf{On}(b_1) \right) \right)$$

You cannot be on two busses at once:

$$\square \left(\forall b_1 \forall b_2 \left(b_1 \neq b_2 \rightarrow \neg \operatorname{On}(b_1) \vee \neg \operatorname{On}(b_2) \right) \right)$$

lacksquare F holds after $a \iff a$ enables F or

F holds before a and a does not disable F

$$\square \left(\forall a \, \forall \vec{x} \, \big([a] F(\vec{x}) \leftrightarrow \gamma^+ \vee (F(\vec{x}) \wedge \neg \gamma^-) \big) \right)$$

Convention:

 $\forall \vec{t}$ stands for $\forall t_1 \dots \forall t_j$, $F(\vec{t})$ for $F(t_1, \dots, t_j)$

You don't fall off the bus when the bus moves:

$$\square \left(\forall b_1 \forall b_2 \forall d \left(\mathsf{On}(b_1) \to [\mathsf{goTo}(b_2, d)] \mathsf{On}(b_1) \right) \right)$$

You cannot be on two busses at once:

$$\square \left(\forall b_1 \forall b_2 \left(b_1 \neq b_2 \rightarrow \neg \mathsf{On}(b_1) \lor \neg \mathsf{On}(b_2) \right) \right)$$

■ F holds after $a \iff a$ enables F or

F holds before a and a does not disable F

$$\square \left(\forall a \forall \vec{x} \left([a] F(\vec{x}) \leftrightarrow \gamma^{+} \lor (F(\vec{x}) \land \neg \gamma^{-}) \right) \right)$$

- $\forall \vec{t}$ stands for $\forall t_1 \dots \forall t_j$, $F(\vec{t})$ for $F(t_1, \dots, t_j)$
- Operator □ has maximum scope

You don't fall off the bus when the bus moves:

$$\square \left(\forall b_1 \forall b_2 \forall d \left(\mathsf{On}(b_1) \to [\mathsf{goTo}(b_2, d)] \mathsf{On}(b_1) \right) \right)$$

You cannot be on two busses at once:

$$\square \left(\forall b_1 \, \forall b_2 \, \big(b_1 \neq b_2 \to \neg \mathsf{On}(b_1) \vee \neg \mathsf{On}(b_2) \big) \right)$$

■ F holds after $a \iff a$ enables F or

 $\it F$ holds before $\it a$ and $\it a$ does not disable $\it F$

$$\square \left(\forall a \, \forall \vec{x} \, \big([a] F(\vec{x}) \leftrightarrow \gamma^+ \vee (F(\vec{x}) \wedge \neg \gamma^-) \big) \right)$$

- $\forall \vec{t}$ stands for $\forall t_1 \ldots \forall t_j$, $F(\vec{t})$ for $F(t_1, \ldots, t_j)$
- Operator □ has maximum scope
- Free variables are implicitly universally quantified

- You don't fall off the bus when the bus moves:
 - $\square \operatorname{On}(b_1) \to [\operatorname{goTo}(b_2, d)] \operatorname{On}(b_1)$
- You cannot be on two busses at once:

$$\Box b_1 \neq b_2 \rightarrow \neg \mathsf{On}(b_1) \vee \neg \mathsf{On}(b_2)$$

■ F holds after $a \iff a$ enables F or F holds before a and a does not disable F

$$\Box [a]F(\vec{x}) \leftrightarrow \gamma^+ \lor (F(\vec{x}) \land \neg \gamma^-)$$

- $\forall \vec{t}$ stands for $\forall t_1 \ldots \forall t_j$, $F(\vec{t})$ for $F(t_1, \ldots, t_j)$
- Operator

 has maximum scope
- Free variables are implicitly universally quantified

You don't fall off the bus when the bus moves:

$$\square \operatorname{On}(b_1) \to [\operatorname{goTo}(b_2, d)] \operatorname{On}(b_1)$$

You cannot be on two busses at once:

$$\Box b_1 \neq b_2 \rightarrow \neg \mathsf{On}(b_1) \vee \neg \mathsf{On}(b_2)$$

lacksquare F holds after $a \iff a$ enables F or

F holds before a and a does not disable F

$$\Box [a]F(\vec{x}) \leftrightarrow \gamma^+ \lor (F(\vec{x}) \land \neg \gamma^-)$$

- $\forall \vec{t}$ stands for $\forall t_1 \ldots \forall t_j$, $F(\vec{t})$ for $F(t_1, \ldots, t_j)$
- Operator □ has maximum scope
- Free variables are implicitly universally quantified
- We sometimes identify a (finite) set Σ of sentences $\{\alpha_1, \ldots, \alpha_j\}$ with the conjunction $\alpha_1 \wedge \ldots \wedge \alpha_j$

Worlds and Situations

```
w[On(M50), \langle \rangle] = 0

w[pos, \langle \rangle] = Central

w[On(M50), getOn(M50)] = 1

w[pos, getOn(M50)] = Central

w[On(M50), getOn(M50) \cdot goTo(M50, Uni)] = 1

w[pos, getOn(M50) \cdot goTo(M50, Uni)] = Uni
```

Worlds and Situations

```
w[On(M50), \langle \rangle] = 0

w[pos, \langle \rangle] = Central

w[On(M50), getOn(M50)] = 1

w[pos, getOn(M50)] = Central

w[On(M50), getOn(M50) \cdot goTo(M50, Uni)] = 1

w[pos, getOn(M50) \cdot goTo(M50, Uni)] = Uni
```


pos = Central

Tree view of w:

Worlds and Situations (2)

Definition: situation, world

A **situation** z is a sequence of action standard names.

Worlds and Situations (2)

Definition: situation, world

A **situation** z is a sequence of action standard names.

A **world** w is a function that maps

- lacksquare primitive functions $f(\vec{n})$ and situations to standard names, and
- primitive atomic formulas $P(\vec{n})$ and situations to $\{0, 1\}$.

Worlds and Situations (2)

Definition: situation, world

A **situation** z is a sequence of action standard names.

A **world** w is a function that maps

- lacksquare primitive functions $f(ec{n})$ and situations to standard names, and
- **primitive atomic formulas** $P(\vec{n})$ and situations to $\{0,1\}$.

The **denotation** of a ground term w.r.t. w in z is defined as

- $\mathbf{w}(n,z) \stackrel{\text{def}}{=} n$ for every standard name n
- $lacksquare w(f(n_1,\ldots,n_j),z) \stackrel{\mathsf{def}}{=} w[f(n_1,\ldots,n_j),z]$

Recall: for simplicity we don't consider nested functions, so f can only be applied to variables or names

The Semantics of the Situation Calculus

Definition: semantics

- $w,z \models P(t_1,\ldots,t_j) \iff w[P(w(t_1,z),\ldots,w(t_j,z),z]=1$
- $\blacksquare w, z \models t_1 = t_2 \iff w(t_1, z) = w(t_2, z)$

The Semantics of the Situation Calculus

Definition: semantics

- $w,z \models P(t_1,\ldots,t_j) \iff w[P(w(t_1,z),\ldots,w(t_j,z),z]=1$
- $\blacksquare w, z \models t_1 = t_2 \iff w(t_1, z) = w(t_2, z)$
- $\blacksquare w, z \models \neg \alpha \iff w, z \not\models \alpha$
- $\blacksquare w, z \models (\alpha \lor \beta) \iff w, z \models \alpha \text{ or } w, z \models \beta$
- $\blacksquare w, z \models \exists x \alpha \iff w, z \models \alpha_n^x$ for some std. name n of x's sort

The Semantics of the Situation Calculus

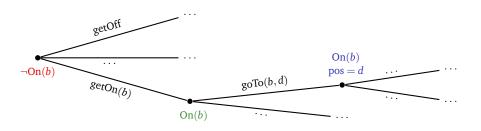
Definition: semantics

- $\blacksquare w, z \models t_1 = t_2 \iff w(t_1, z) = w(t_2, z)$
- $\blacksquare w, z \models \neg \alpha \iff w, z \not\models \alpha$
- $\blacksquare w, z \models (\alpha \lor \beta) \iff w, z \models \alpha \text{ or } w, z \models \beta$
- $w, z \models \exists x \alpha \iff w, z \models \alpha_n^x$ for some std. name n of x's sort
- $w,z \models [n]\alpha \iff w,z \cdot n \models \alpha$
- $w, z \models \Box \alpha \iff w, z \cdot z' \models \alpha \text{ for all situations } z'$

 $\Sigma \models \alpha \iff \text{for all } w, \text{ if } w, \langle \rangle \models \beta \text{ for all } \beta \in \Sigma, \text{ then } w, \langle \rangle \models \alpha$

Example

```
w \models \neg \text{On}(b)
w \models [\text{getOn}(b)] \text{On}(b)
w \models [\text{getOn}(b)] [\text{goTo}(b, d)] \text{On}(b)
w \models [\text{getOn}(b)] [\text{goTo}(b, d)] \text{pos} = d
w \models \exists a_1 \exists a_2 [a_1] [a_2] \text{pos} = d
```



When are we on a bus?

When are we on a bus?

Effect axioms:

 $\square \left[\mathsf{getOn}(b) \right] \mathsf{On}(b)$

 $\square \, [\mathsf{getOff}] \neg \mathsf{On}(b)$

When are we on a bus?

Effect axioms:

$$\Box a = getOn(b) \rightarrow [a]On(b)$$

$$\Box a = \mathsf{getOff} \to [a] \neg \mathsf{On}(b)$$

When are we on a bus?

Effect axioms:

$$\Box a = getOn(b) \rightarrow [a]On(b)$$

$$\Box a = \mathsf{getOff} \to [a] \neg \mathsf{On}(b)$$

Assume **causal completeness**, i.e., assume:

$$\Box \neg \operatorname{On}(b) \wedge [a] \operatorname{On}(b) \rightarrow a = \operatorname{getOn}(b)$$

$$\square$$
 $\operatorname{On}(b) \wedge [a] \neg \operatorname{On}(b) \rightarrow a = \operatorname{getOff}$

When are we on a bus?

Effect axioms:

$$\Box a = getOn(b) \rightarrow [a]On(b)$$

$$\Box a = \text{getOff} \rightarrow [a] \neg \text{On}(b)$$

Assume **causal completeness**, i.e., assume:

$$\Box \neg \mathsf{On}(b) \wedge [a] \quad \mathsf{On}(b) \rightarrow a = \mathsf{getOn}(b)$$

So we get:

$$\square [a] \mathsf{On}(b) \leftrightarrow a = \mathsf{getOn}(b) \lor (\mathsf{On}(b) \land \neg a = \mathsf{getOff})$$

Done! This is called a **successor-state axiom**.

Proof on paper

Successor-State Axioms

Definition: successor-state axiom

A successor-state axiom has the form

$$\Box [a]F(\vec{x}) \leftrightarrow \gamma_F$$

or

$$\Box [a]f(\vec{x}) = y \leftrightarrow \gamma_f$$

where γ_F, γ_f do not mention \square or [t] operators.

Successor-State Axioms

Definition: successor-state axiom

A successor-state axiom has the form

$$\Box [a]F(\vec{x}) \leftrightarrow \gamma_F$$

or

$$\Box [a]f(\vec{x}) = y \leftrightarrow \gamma_f$$

where γ_F, γ_f do not mention \square or [t] operators.

Typical form of

- lacksquare γ_F is $\gamma_F^+ \lor (F(\vec{x}) \land \neg \gamma_F^-)$

Successor-State Axioms

Definition: successor-state axiom

A successor-state axiom has the form

$$\Box [a]F(\vec{x}) \leftrightarrow \gamma_F$$

or

$$\Box [a]f(\vec{x}) = y \leftrightarrow \gamma_f$$

where γ_F, γ_f do not mention \square or [t] operators.

Typical form of

- lacksquare γ_F is $\gamma_F^+ \lor (F(\vec{x}) \land \neg \gamma_F^-)$

Make sure that $\models \gamma_f y_1 \wedge \gamma_f y_2 \rightarrow y_1 = y_2$. Otherwise: inconsistency!

Examples

■ You're on a bus ⇔ you got on it *or* you were on it and didn't get off it:

$$\square [a] \mathsf{On}(b) \leftrightarrow a = \mathsf{getOn}(b) \lor (\mathsf{On}(b) \land a \neq \mathsf{getOff})$$

■ Your position is $p \iff$ you were on a bus that moved to p or you were at p already and not on a bus that moved:

$$\Box [a] \mathrm{pos} = p \leftrightarrow \exists b \left(a = \mathrm{goTo}(b, p) \land \mathrm{On}(b) \right) \lor \\ \left(\mathrm{pos} = p \land \neg \exists d \exists b \left(a = \mathrm{goTo}(b, d) \land \mathrm{On}(b) \right) \right)$$

An action theory must describe

■ the initial situation

An action theory must describe

- the initial situation
- lacktriangle how fluents change \Longrightarrow successor-state axioms

An action theory must describe

- the initial situation
- lacktriangledown how fluents change \Longrightarrow successor-state axioms
- the action preconditions \implies axiom for Poss(a)

An action theory must describe

- the initial situation
- lacktriangle how fluents change \Longrightarrow successor-state axioms
- the action preconditions \implies axiom for Poss(a)

Definition: basic action theory

 $\Sigma_0 \wedge \Sigma_{dyn}$ is a **basic action theory** over a set of fluents ${\mathcal F}$ iff

- lacksquare Σ_{dyn} contains a successor-state axiom for every fluent in ${\mathcal F}$
- lacksquare $\Sigma_{ ext{dyn}}$ contains an axiom $\square\operatorname{Poss}(a)\leftrightarrow\pi$
- Σ_0 , π mention no Poss, \square , [t].

a = action, b = bus, d = destination, p = position

The initial situation:

 $pos = Central \land Route(M50, Uni)$

a = action, b = bus, d = destination, p = position

■ The initial situation:

$$pos = Central \land Route(M50, Uni)$$

■ You can get on/off a bus:

$$\square [a] \mathsf{On}(b) \leftrightarrow a = \mathsf{getOn}(b) \lor (\mathsf{On}(b) \land a \neq \mathsf{getOff})$$

a = action, b = bus, d = destination, p = position

■ The initial situation:

$$pos = Central \land Route(M50, Uni)$$

■ You can get on/off a bus:

$$\square [a] \mathsf{On}(b) \leftrightarrow a = \mathsf{getOn}(b) \lor (\mathsf{On}(b) \land a \neq \mathsf{getOff})$$

You can move by being on a bus that moves:

$$\Box [a] pos = p \leftrightarrow \exists b \left(a = goTo(b, p) \land On(b) \right) \lor \left(pos = p \land \neg \exists d \exists b \left(a = goTo(b, d) \land On(b) \right) \right)$$

a = action, b = bus, d = destination, p = position

■ The initial situation:

$$pos = Central \land Route(M50, Uni)$$

You can get on/off a bus:

$$\square\left[a\right]\mathsf{On}(b) \leftrightarrow a = \mathsf{getOn}(b) \lor \left(\mathsf{On}(b) \land a \neq \mathsf{getOff}\right)$$

You can move by being on a bus that moves:

$$\Box [a] pos = p \leftrightarrow \exists b \left(a = goTo(b, p) \land On(b) \right) \lor \left(pos = p \land \neg \exists d \exists b \left(a = goTo(b, d) \land On(b) \right) \right)$$

You can't get on (off) a bus when you're on one (none), and a bus can only go along its route:

$$\square \operatorname{Poss}(a) \leftrightarrow \left(\exists b \, a = \operatorname{getOn}(b) \to \forall b \, \neg \operatorname{On}(b)\right) \land \\ \left(a = \operatorname{getOff} \to \exists b \, \operatorname{On}(b)\right) \land \\ \forall b \, \forall d \, \left(a = \operatorname{goTo}(b, d) \to \operatorname{Route}(b, d)\right)$$

The Projection Problem

The *central task* in reasoning about actions:

Definition: projection problem

Given a basic action theory:

Is a goal formula true in a future situation?

$$\Sigma_0 \wedge \Sigma_{\mathrm{dyn}} \models [t_1] \dots [t_j] \alpha$$

Want: a way to *eliminate* [t] *operators*.

The Projection Problem

The *central task* in reasoning about actions:

Definition: projection problem

Given a basic action theory:

Is a goal formula true in a future situation?

$$\Sigma_0 \wedge \Sigma_{\mathrm{dyn}} \models [t_1] \dots [t_j] \alpha$$

Want: a way to *eliminate* [t] *operators*.

Two approaches:

- **Regression**: reduce to $Σ_0 \models α^*$
- <u>Progression</u>: reduce to $\Sigma_0^* \cup \Sigma_{dyn} \models \alpha$

Overview of the Lecture

- Three Problems
- The Situation Calculus
- Projection by regression
- Projection by progression
- Knowledge and sensing
- Concluding words

Regression - The Idea

Successor state axioms relate truth after a to truth before a:

 $\square\left[a\right]F(\vec{x})\leftrightarrow\gamma_{F}$, where γ_{F} mentions no [t]

Regression - The Idea

- Successor state axioms relate truth after a to truth before a:
 - $\square\left[a\right]F(\vec{x})\leftrightarrow\gamma_{F}$, where γ_{F} mentions no [t]
- lacksquare Idea: successively replace $[r]F(ec{t})$ with $\gamma_F rac{a \ ec{x}}{r \ ec{t}}$

Regression – The Idea

- Successor state axioms relate truth after a to truth before a:
 - $\square\left[a\right]F(\vec{x})\leftrightarrow\gamma_{F}$, where γ_{F} mentions no [t]
- Idea: successively replace $[r]F(\vec{t})$ with $\gamma_F \frac{a \, \vec{x}}{r \, \vec{t}}$
- lacksquare Result: $\Sigma_0 \cup \Sigma_{ ext{dyn}} \models [t_1] \dots [t_j] lpha$ reduces to $\Sigma_0 \cup \Sigma_{ ext{dyn}} \models lpha^*$

Regression – The Idea

- Successor state axioms relate truth after a to truth before a:
 - $\square\left[a\right]F(\vec{x})\leftrightarrow\gamma_{F}$, where γ_{F} mentions no [t]
- lacksquare Idea: successively replace $[r]F(ec{t})$ with $\gamma_F rac{a \, ec{x}}{r \, ec{t}}$
- lacksquare Result: $\Sigma_0 \cup \Sigma_{ ext{dyn}} \models [t_1] \dots [t_j] lpha$ reduces to $\Sigma_0 \cup \Sigma_{ ext{dyn}} \models lpha^*$
- Good: very simple and quite elegant

Regression – The Idea

- Successor state axioms relate truth after a to truth before a: $\Box [a]F(\vec{x}) \leftrightarrow \gamma_F, \text{ where } \gamma_F \text{ mentions no } [t]$
- Idea: successively replace $[r]F(\vec{t})$ with $\gamma_F \frac{a\vec{x}}{r\vec{t}}$
- lacksquare Result: $\Sigma_0 \cup \Sigma_{ ext{dyn}} \models [t_1] \dots [t_j] lpha$ reduces to $\Sigma_0 \cup \Sigma_{ ext{dyn}} \models lpha^*$
- Good: very simple and quite elegant
- Bad: α^* may grow exponentially

Regression

Definition: regression operator, objective part

Regression of α is defined w.r.t. a basic action theory where γ_F, γ_f are the RHSs of the successor-state axioms and π is the RHS of the Poss axiom. We assume no variable in α is quantified twice in the same scope (as in $\exists x (\alpha \lor \exists x \beta)$):

- $\blacksquare \ \mathcal{R}[z \cdot r, F(\vec{t})] \stackrel{\text{def}}{=} \mathcal{R}[z, \gamma_F \frac{a \vec{x}}{r \vec{t}}]$
- $\mathbb{R}[z \cdot r, f(\vec{t}) = t_0] \stackrel{\text{def}}{=} \mathcal{R}[z, \gamma_f \frac{a \vec{x} y}{r \vec{t} t_0}]$

Regression

Definition: regression operator, objective part

Regression of α is defined w.r.t. a basic action theory where γ_F, γ_f are the RHSs of the successor-state axioms and π is the RHS of the Poss axiom. We assume no variable in α is quantified twice in the same scope (as in $\exists x \, (\alpha \vee \exists x \, \beta)$):

- $\blacksquare \ \mathcal{R}[z \cdot r, F(\vec{t})] \stackrel{\text{def}}{=} \mathcal{R}[z, \gamma_F \frac{a \vec{x}}{r \vec{t}}]$
- $\mathbb{R}[z \cdot r, f(\vec{t}) = t_0] \stackrel{\text{def}}{=} \mathcal{R}[z, \gamma_f \frac{a \vec{x} y}{r \vec{t} t_0}]$
- $\blacksquare \ \mathcal{R}[\langle \rangle, F(\vec{t})] \stackrel{\text{def}}{=} F(\vec{t})$

Regression

Definition: regression operator, objective part

Regression of α is defined w.r.t. a basic action theory where γ_F, γ_f are the RHSs of the successor-state axioms and π is the RHS of the Poss axiom. We assume no variable in α is quantified twice in the same scope (as in $\exists x (\alpha \vee \exists x \beta)$):

$$\blacksquare \ \mathcal{R}[z \cdot r, F(\vec{t})] \stackrel{\text{def}}{=} \mathcal{R}[z, \gamma_F \frac{a \vec{x}}{r \vec{t}}]$$

$$\mathbb{R}[z \cdot r, f(\vec{t}) = t_0] \stackrel{\text{def}}{=} \mathcal{R}[z, \gamma_f \frac{a \vec{x} y}{r \vec{t} t_0}]$$

$$\blacksquare \ \mathcal{R}[\langle \rangle, F(\vec{t})] \stackrel{\text{def}}{=} F(\vec{t})$$

$$\blacksquare \mathcal{R}[\langle \rangle, f(\vec{t}) = t_0] \stackrel{\text{def}}{=} f(\vec{t}) = t_0$$

$$\mathbb{R}[z, \operatorname{Poss}(t)] \stackrel{\text{def}}{=} \mathcal{R}[z, \pi_t^a]$$

Regression

Definition: regression operator, objective part

Regression of α is defined w.r.t. a basic action theory where γ_F, γ_f are the RHSs of the successor-state axioms and π is the RHS of the Poss axiom. We assume no variable in α is quantified twice in the same scope (as in $\exists x (\alpha \vee \exists x \beta)$):

$$\blacksquare \ \mathcal{R}[z \cdot r, F(\vec{t})] \stackrel{\text{def}}{=} \mathcal{R}[z, \gamma_F \frac{a \vec{x}}{r \vec{t}}]$$

$$\mathbb{R}[z \cdot r, f(\vec{t}) = t_0] \stackrel{\text{def}}{=} \mathcal{R}[z, \gamma_f \frac{a \vec{x} y}{r \vec{t} t_0}]$$

$$\blacksquare \ \mathcal{R}[\langle \rangle, F(\vec{t})] \stackrel{\text{def}}{=} F(\vec{t})$$

$$\blacksquare \ \mathcal{R}[\langle \rangle, f(\vec{t}) = t_0] \stackrel{\text{def}}{=} f(\vec{t}) = t_0$$

$$\mathbb{Z}[z, \operatorname{Poss}(t)] \stackrel{\text{def}}{=} \mathcal{R}[z, \pi_t^a]$$

$$\blacksquare \ \mathcal{R}[z,(\alpha \vee \beta)] \stackrel{\text{def}}{=} (\mathcal{R}[z,\alpha] \vee \mathcal{R}[z,\beta])$$

$$\blacksquare \mathcal{R}[z, \exists x \, \alpha] \stackrel{\text{def}}{=} \exists x \, \mathcal{R}[z, \, \alpha]$$

Regression

Definition: regression operator, objective part

Regression of α is defined w.r.t. a basic action theory where γ_F, γ_f are the RHSs of the successor-state axioms and π is the RHS of the Poss axiom. We assume no variable in α is quantified twice in the same scope (as in $\exists x (\alpha \lor \exists x \beta)$):

$$\blacksquare \ \mathcal{R}[z \cdot r, F(\vec{t})] \stackrel{\text{def}}{=} \mathcal{R}[z, \gamma_F \frac{a \vec{x}}{r \vec{t}}]$$

$$\mathbb{R}[z \cdot r, f(\vec{t}) = t_0] \stackrel{\text{def}}{=} \mathcal{R}[z, \gamma_f \frac{a \vec{x} y}{r \vec{t} t_0}]$$

$$\blacksquare \ \mathcal{R}[\langle \rangle, F(\vec{t})] \stackrel{\text{def}}{=} F(\vec{t})$$

$$\blacksquare \mathcal{R}[\langle \rangle, f(\vec{t}) = t_0] \stackrel{\text{def}}{=} f(\vec{t}) = t_0$$

$$\mathbb{Z}[z, \operatorname{Poss}(t)] \stackrel{\text{def}}{=} \mathcal{R}[z, \pi_t^a]$$

$$\blacksquare \ \mathcal{R}[z,(\alpha \vee \beta)] \stackrel{\text{def}}{=} (\mathcal{R}[z,\alpha] \vee \mathcal{R}[z,\beta])$$

$$\blacksquare \mathcal{R}[z, \exists x \, \alpha] \stackrel{\text{def}}{=} \exists x \, \mathcal{R}[z, \, \alpha]$$

$$\blacksquare \mathcal{R}[z, [t]\alpha] \stackrel{\text{def}}{=} \mathcal{R}[z \cdot t, \alpha]$$

The Regression Result

Theorem: regression

Let $\Sigma_0 \wedge \Sigma_{dyn}$ be a basic action theory over $\mathcal{F}.$

Let α mention only fluents from $\mathcal{F} \cup \{Poss\}$ and no \square .

$$\Sigma_0 \cup \Sigma_{dyn} \models \alpha \iff \Sigma_0 \models \mathcal{R}[\langle \rangle, \alpha]$$

Let $\Sigma_0 \cup \Sigma_{dyn}$ be the bus scenario.

$$\Sigma_0 \cup \Sigma_{dyn} \models [\text{getOn}(\text{M50})][\text{goTo}(\text{M50},\text{Uni})] pos = \text{Uni ?}$$

Let $\Sigma_0 \cup \Sigma_{dyn}$ be the bus scenario.

$$\Sigma_0 \cup \Sigma_{dyn} \models [\text{getOn}(\text{M50})][\text{goTo}(\text{M50},\text{Uni})] pos = \text{Uni} ~\ref{eq:setOn}$$

 $\Leftrightarrow \; \Sigma_0 \models \mathcal{R}[\langle\rangle, [\text{getOn}(\text{M50})][\text{goTo}(\text{M50}, \text{Uni})] pos = \text{Uni}]$

Let $\Sigma_0 \cup \Sigma_{dyn}$ be the bus scenario.

$$\Sigma_0 \cup \Sigma_{dyn} \models [\text{getOn}(\text{M50})][\text{goTo}(\text{M50},\text{Uni})] pos = \text{Uni} ~\ref{eq:setOn}$$

- $\Leftrightarrow \ \Sigma_0 \models \mathcal{R}[\langle\rangle, [\text{getOn}(\text{M50})][\text{goTo}(\text{M50}, \text{Uni})] pos = \text{Uni}]$
- $\Leftrightarrow \ \Sigma_0 \models \mathcal{R}[\underline{\text{getOn}(\text{M50})} \cdot \underline{\text{goTo}(\text{M50}, \text{Uni})}, \underline{\text{pos}} = \underline{\text{Uni}}]$

$$\Box [a] pos = p \leftrightarrow \exists b (a = goTo(b, p) \land On(b)) \lor (pos = p \land \neg \exists d \exists b (a = goTo(b, d) \land On(b)))$$

Let $\Sigma_0 \cup \Sigma_{dvn}$ be the bus scenario.

$$\Sigma_0 \cup \Sigma_{dyn} \models [getOn(M50)][goTo(M50, Uni)]pos = Uni$$
?

$$\Leftrightarrow \; \Sigma_0 \models \mathcal{R}[\langle\rangle, [\text{getOn}(\text{M50})][\text{goTo}(\text{M50}, \text{Uni})] pos = \text{Uni}]$$

$$\Leftrightarrow \ \Sigma_0 \models \mathcal{R}[\mathsf{getOn}(\mathsf{M50}) \cdot \mathsf{goTo}(\mathsf{M50},\mathsf{Uni}),\mathsf{pos} = \textcolor{red}{\mathsf{Uni}}]$$

$$\Leftrightarrow \Sigma_0 \models \mathcal{R}[\mathsf{getOn}(\mathsf{M50}), \gamma_{\mathsf{pos}} \overset{a}{\underset{\mathsf{goTo}(\mathsf{M50},\mathsf{Uni})}{\mathsf{Uni}}}]^p$$

$$\Box [a] \mathrm{pos} = p \leftrightarrow \exists b \left(a = \mathrm{goTo}(b, p) \land \mathrm{On}(b) \right) \lor \\ \left(\mathrm{pos} = p \land \neg \exists d \exists b \left(a = \mathrm{goTo}(b, d) \land \mathrm{On}(b) \right) \right)$$

Let $\Sigma_0 \cup \Sigma_{dvn}$ be the bus scenario.

$$\Sigma_0 \cup \Sigma_{dyn} \models [getOn(M50)][goTo(M50,Uni)]pos = Uni$$
 ?

- $\Leftrightarrow \; \Sigma_0 \models \mathcal{R}[\langle\rangle, [\text{getOn}(\text{M50})][\text{goTo}(\text{M50}, \text{Uni})] pos = \text{Uni}]$
- $\Leftrightarrow \ \Sigma_0 \models \mathcal{R}[\mathsf{getOn}(\mathsf{M50}) \cdot \mathsf{goTo}(\mathsf{M50},\mathsf{Uni}),\mathsf{pos} = \mathsf{Uni}]$
- $\Leftrightarrow \; \Sigma_0 \models \mathcal{R}[\text{getOn}(\text{M50}), \gamma_{pos} \, ^{\textit{a}}_{\text{goTo}(\text{M50}, \text{Uni})} \overset{\textit{p}}{\text{Uni}}]$
- $\Leftrightarrow \Sigma_0 \models \exists b \left(goTo(M50, Uni) = goTo(b, Uni) \land \mathcal{R}[getOn(M50), On(b)] \right) \lor \dots$

$$\square\left[a\right]\mathsf{On}(b) \leftrightarrow a = \mathsf{getOn}(b) \lor \left(\mathsf{On}(b) \land a \neq \mathsf{getOff}\right)$$

Let $\Sigma_0 \cup \Sigma_{dyn}$ be the bus scenario.

$$\Sigma_0 \cup \Sigma_{dyn} \models [\text{getOn}(\text{M50})][\text{goTo}(\text{M50},\text{Uni})] pos = \text{Uni} ~\ref{eq:m50}$$

- $\Leftrightarrow \; \Sigma_0 \models \mathcal{R}[\langle\rangle, [\text{getOn}(\text{M50})][\text{goTo}(\text{M50}, \text{Uni})] pos = \text{Uni}]$
- $\Leftrightarrow \ \Sigma_0 \models \mathcal{R}[\text{getOn}(\text{M50}) \cdot \text{goTo}(\text{M50}, \text{Uni}), \text{pos} = \text{Uni}]$
- $\Leftrightarrow \ \Sigma_0 \models \mathcal{R}[\text{getOn}(\text{M50}), \gamma_{pos} \operatorname*{\textit{a}}_{\text{goTo}(\text{M50}, \text{Uni})\text{Uni}}^{\quad p}]$
- $\Leftrightarrow \Sigma_0 \models \exists b \left(goTo(M50, Uni) = goTo(b, Uni) \land \mathcal{R}[getOn(M50), On(b)] \right) \lor \dots$
- $\Leftrightarrow \; \Sigma_0 \models \exists b \left(\mathsf{goTo}(\mathsf{M50},\mathsf{Uni}) = \mathsf{goTo}(b,\mathsf{Uni}) \land \mathcal{R}[\langle\rangle,\gamma_{\mathsf{On}} \, ^a_{\underset{\mathsf{getOn}(\mathsf{M50})}{ab}}{}^b] \right) \lor \; \ldots$

$$\square\left[a\right]\mathsf{On}(b) \leftrightarrow a = \mathsf{getOn}(b) \lor \left(\mathsf{On}(b) \land a \neq \mathsf{getOff}\right)$$

Let $\Sigma_0 \cup \Sigma_{dyn}$ be the bus scenario.

$$\Sigma_0 \cup \Sigma_{dyn} \models [\text{getOn}(\text{M50})][\text{goTo}(\text{M50},\text{Uni})] pos = \text{Uni ?}$$

- $\Leftrightarrow \ \Sigma_0 \models \mathcal{R}[\langle\rangle, [\text{getOn}(\text{M50})][\text{goTo}(\text{M50}, \text{Uni})] pos = \text{Uni}]$
- $\Leftrightarrow \ \Sigma_0 \models \mathcal{R}[\text{getOn}(\text{M50}) \cdot \text{goTo}(\text{M50}, \text{Uni}), \text{pos} = \text{Uni}]$
- $\Leftrightarrow \Sigma_0 \models \mathcal{R}[\mathsf{getOn}(\mathsf{M50}), \gamma_{\mathsf{pos}} \, {}^{\mathit{a}}_{\mathsf{goTo}(\mathsf{M50},\mathsf{Uni})\mathsf{Uni}}]$
- $\Leftrightarrow \Sigma_0 \models \exists b (goTo(M50, Uni) = goTo(b, Uni) \land \mathcal{R}[getOn(M50), On(b)]) \lor \dots$
- $\Leftrightarrow \; \Sigma_0 \models \exists b \left(\mathsf{goTo}(\mathsf{M50},\mathsf{Uni}) = \mathsf{goTo}(b,\mathsf{Uni}) \land \mathcal{R}[\langle\rangle,\gamma_{\mathsf{On}} \, ^a_{\underbrace{\mathsf{getOn}(\mathsf{M50})}{b}}{}^b] \right) \lor \; \dots$
- $\begin{array}{l} \Leftrightarrow \; \Sigma_0 \models \exists \textit{b} \left(\mathsf{goTo}(\mathsf{M50},\mathsf{Uni}) = \mathsf{goTo}(\textit{b},\mathsf{Uni}) \land \\ \left(\frac{\mathsf{getOn}(\mathsf{M50})}{\mathsf{getOn}(\mathsf{M50})} = \mathsf{getOn}(\textit{b}) \lor \\ \left(\mathcal{R}[\langle \rangle,\mathsf{On}(\textit{b})] \land \frac{\mathsf{getOn}(\mathsf{M50})}{\mathsf{getOn}(\mathsf{M50})} \neq \mathsf{getOff}) \right) \right) \lor \ldots \end{array}$

Let $\Sigma_0 \cup \Sigma_{\text{dyn}}$ be the bus scenario.

$$\Sigma_0 \cup \Sigma_{dvn} \models [\text{getOn}(\text{M50})][\text{goTo}(\text{M50},\text{Uni})] pos = \text{Uni}$$
 ?

$$\Leftrightarrow \ \Sigma_0 \models \mathcal{R}[\langle\rangle, [\text{getOn}(\text{M50})][\text{goTo}(\text{M50}, \text{Uni})] pos = \text{Uni}]$$

$$\Leftrightarrow \; \Sigma_0 \models \mathcal{R}[\mathsf{getOn}(\mathsf{M50}) \cdot \mathsf{goTo}(\mathsf{M50},\mathsf{Uni}),\mathsf{pos} = \mathsf{Uni}]$$

$$\Leftrightarrow \; \Sigma_0 \models \mathcal{R}[\mathsf{getOn}(\mathsf{M50}), \gamma_{pos} \, {}^{\mathit{a}}_{\mathsf{goTo}(\mathsf{M50}, \mathsf{Uni})} {}^{\mathit{p}}_{\mathsf{Uni}}]$$

$$\Leftrightarrow \ \Sigma_0 \models \exists \textit{b} \left(\mathsf{goTo}(\mathsf{M50},\mathsf{Uni}) = \mathsf{goTo}(\textit{b},\mathsf{Uni}) \land \mathcal{R}[\mathsf{getOn}(\mathsf{M50}),\mathsf{On}(\textit{b})] \right) \lor \ldots$$

$$\Leftrightarrow \Sigma_0 \models \exists b \left(\mathsf{goTo}(\mathsf{M50},\mathsf{Uni}) = \mathsf{goTo}(b,\mathsf{Uni}) \land \mathcal{R}[\langle \rangle,\gamma_{\mathsf{On}} \overset{a}{\underset{\mathsf{getOn}(\mathsf{M50})}{ab}} \overset{b}{)}] \right) \lor \ldots$$

$$\Leftrightarrow \Sigma_0 \models \exists b (goTo(M50, Uni) = goTo(b, Uni) \land (getOn(M50) = getOn(b) \lor)$$

$$(\mathcal{R}[\langle\rangle, \operatorname{On}(b)] \wedge \operatorname{getOn}(\operatorname{M50}) \neq \operatorname{getOff}))) \vee \dots$$

$$\Leftrightarrow \ \Sigma_0 \models \exists b \ \big(\mathsf{M50} = b \land \big(\mathsf{M50} = b \lor \mathcal{R}[\langle \rangle, \mathsf{On}(b)] \big) \big) \lor \dots \qquad \checkmark$$

Overview of the Lecture

- Three Problems
- The Situation Calculus
- Projection by regression
- Projection by progression
- Knowledge and sensing
- Concluding words

■ Want a new Σ_0 after action t

- Want a new Σ_0 after action t
- Idea: use $\gamma_F \frac{a \vec{x}}{t \vec{t}}$ to initialise new $F(\vec{t})$, forget old $F(\vec{t})$

- Want a new Σ_0 after action t
- Idea: use $\gamma_F \frac{a \vec{x}}{t \vec{t}}$ to initialise new $F(\vec{t})$, forget old $F(\vec{t})$
- lacksquare Result: $\Sigma_0 \cup \Sigma_{ ext{dyn}} \models [t_1] \dots [t_j] lpha$ reduces to $\Sigma_0^* \cup \Sigma_{ ext{dyn}} \models lpha$

- Want a new Σ_0 after action t
- Idea: use $\gamma_F \frac{a \vec{x}}{t \vec{t}}$ to initialise new $F(\vec{t})$, forget old $F(\vec{t})$
- lacksquare Result: $\Sigma_0 \cup \Sigma_{ ext{dyn}} \models [t_1] \dots [t_j] lpha$ reduces to $\Sigma_0^* \cup \Sigma_{ ext{dyn}} \models lpha$
- Progression is the *dual* to regression

- Want a new Σ_0 after action t
- Idea: use $\gamma_F \frac{a \vec{x}}{t \vec{t}}$ to initialise new $F(\vec{t})$, forget old $F(\vec{t})$
- lacksquare Result: $\Sigma_0 \cup \Sigma_{ ext{dyn}} \models [t_1] \dots [t_j] \alpha$ reduces to $\Sigma_0^* \cup \Sigma_{ ext{dyn}} \models \alpha$
- Progression is the dual to regression
- Big problem: forgetting is very hard to formalise!
 - Requires second-order logic in general
 - Second-order logic features quantification over predicates/functions

- Want a new Σ_0 after action t
- Idea: use $\gamma_F \frac{a \vec{x}}{r \vec{t}}$ to initialise new $F(\vec{t})$, forget old $F(\vec{t})$
- lacksquare Result: $\Sigma_0 \cup \Sigma_{ ext{dyn}} \models [t_1] \dots [t_j] \alpha$ reduces to $\Sigma_0^* \cup \Sigma_{ ext{dyn}} \models \alpha$
- Progression is the dual to regression
- Big problem: forgetting is very hard to formalise!
 - Requires second-order logic in general
 - Second-order logic features quantification over predicates/functions
 - ightharpoonup Actions like goTo(b,d) cause the problem
 - goTo(b, d) moves the passengers of the bus
 - Indirect effects

- Want a new Σ_0 after action t
- Idea: use $\gamma_F \frac{a \vec{x}}{r \vec{t}}$ to initialise new $F(\vec{t})$, forget old $F(\vec{t})$
- lacksquare Result: $\Sigma_0 \cup \Sigma_{ ext{dyn}} \models [t_1] \dots [t_j] lpha$ reduces to $\Sigma_0^* \cup \Sigma_{ ext{dyn}} \models lpha$
- Progression is the dual to regression
- Big problem: forgetting is very hard to formalise!
 - Requires second-order logic in general
 - Second-order logic features quantification over predicates/functions
 - ightharpoonup Actions like goTo(b,d) cause the problem
 - goTo(b,d) moves the passengers of the bus
 - Indirect effects
 - Expressible subclasses are known

Overview of the Lecture

- Three Problems
- The Situation Calculus
- Projection by regression
- Projection by progression
- Knowledge and sensing
- Concluding words

Knowledge and Sensing

- New formulas: $\mathbf{K}\alpha$ $\mathbf{O}\alpha$
- lacktriangle Predicate SF(t) represents sensing result of action t

Knowledge and Sensing

- New formulas: $\mathbf{K}\alpha$ $\mathbf{O}\alpha$
- Predicate SF(t) represents sensing result of action t

Ex.: You ask the driver whether the bus is going to UNSW

- "Yes" ⇒ you know the bus going to UNSW
- "No" ⇒ you know the bus is not going to UNSW

Knowledge and Sensing

- New formulas: $\mathbf{K}\alpha$ $\mathbf{O}\alpha$
- Predicate SF(t) represents sensing result of action t

Ex.: You ask the driver whether the bus is going to UNSW

- "Yes" ⇒ you know the bus going to UNSW
- "No" ⇒ you know the bus is not going to UNSW

Formalisation of knowledge and sensing:

- Set of possible worlds *e*
- Doing *A* tells you the value of SF(*A*) in real world *w*
- Only consider those $w' \in e$ which agree with wIf w says bus goes to UNSW, only consider w' where bus goes to UNSW

Definition: semantics of knowledge and sensing

 $w \simeq_z w' \iff w, w'$ agree on the sensing results:

- $\blacksquare w \simeq_{\langle\rangle} w'$
- $lacksquare w \simeq_{z \cdot n} w' \iff w \simeq_z w' \text{ and } w[\mathrm{SF}(n), z] = w'[\mathrm{SF}(n), z]$

Definition: semantics of knowledge and sensing

 $w \simeq_z w' \iff w, w'$ agree on the sensing results:

- $\blacksquare w \simeq_{\langle\rangle} w'$
- $lacksquare w \simeq_{z \cdot n} w' \iff w \simeq_z w' \text{ and } w[\mathrm{SF}(n), z] = w'[\mathrm{SF}(n), z]$

An **epistemic state** e is a set of worlds.

Definition: semantics of knowledge and sensing

 $w \simeq_z w' \iff w, w'$ agree on the sensing results:

- $\blacksquare w \simeq_{\langle\rangle} w'$
- $lacksquare w \simeq_{z \cdot n} w' \iff w \simeq_z w' \text{ and } w[\operatorname{SF}(n), z] = w'[\operatorname{SF}(n), z]$

An **epistemic state** *e* is a set of worlds.

Rules from Slide 14 retrofitted with additional e parameter, e.g., $e, w, z \models \neg \alpha \iff e, w, z \not\models \alpha$

Definition: semantics of knowledge and sensing

 $w \simeq_z w' \iff w, w'$ agree on the sensing results:

- $\blacksquare w \simeq_{\langle\rangle} w'$
- $lacksquare w \simeq_{z \cdot n} w' \iff w \simeq_z w' \text{ and } w[\mathrm{SF}(n), z] = w'[\mathrm{SF}(n), z]$

An **epistemic state** e is a set of worlds.

- Rules from Slide 14 retrofitted with additional e parameter, e.g., $e, w, z \models \neg \alpha \iff e, w, z \not\models \alpha$
- $e, w, z \models \mathbf{K}\alpha \iff \text{for all worlds } w', \\ w' \in e \text{ and } w \simeq_z w' \Rightarrow e, w', z \models \alpha$

Definition: semantics of knowledge and sensing

 $w \simeq_z w' \iff w, w'$ agree on the sensing results:

- $\blacksquare w \simeq_{\langle\rangle} w'$
- $lacksquare w \simeq_{z \cdot n} w' \iff w \simeq_z w' \text{ and } w[\mathrm{SF}(n), z] = w'[\mathrm{SF}(n), z]$

An **epistemic state** *e* is a set of worlds.

- Rules from Slide 14 retrofitted with additional e parameter, e.g., $e, w, z \models \neg \alpha \iff e, w, z \not\models \alpha$
- $e, w, z \models \mathbf{K}\alpha \iff \text{for all worlds } w', \\ w' \in e \text{ and } w \simeq_z w' \Rightarrow e, w', z \models \alpha$
- $e, w, z \models \mathbf{O}\alpha \iff \text{for all worlds } w', \\ w' \in e \text{ and } w \simeq_z w' \Leftrightarrow e, w', z \models \alpha$

 $\Sigma \models \alpha \iff$ for all e, w, if $e, w, \langle \rangle \models \beta$ for all $\beta \in \Sigma$, then $e, w, \langle \rangle \models \alpha$

Basic Action Theories with Knowledge

An action theory must describe

- what is true the initial situation
- what is *known* about the initial situation
- lacktriangledown how fluents change \Longrightarrow successor-state axioms
- the action preconditions \implies axiom for Poss(a)
- how sensing works \implies axiom for SF(a)

Basic Action Theories with Knowledge

An action theory must describe

- what is true the initial situation
- what is *known* about the initial situation
- how fluents change ⇒ successor-state axioms
- the action preconditions \implies axiom for Poss(a)
- how sensing works \implies axiom for SF(a)

Definition: basic action theory

 $\Sigma_0 \wedge \Sigma_{dyn} \wedge \mathbf{O}(\Sigma_1 \wedge \Sigma_{dyn})$ is a basic action theory over $\mathcal F$ iff

- \blacksquare Σ_{dyn} contains a successor-state axiom for every fluent in ${\cal F}$
- Σ_{dvn} contains an axiom $\square \operatorname{Poss}(a) \leftrightarrow \pi$
- Σ_{dyn} contains an axiom \square SF $(a) \leftrightarrow \phi$
- Σ_0 , Σ_1 , π , φ mention no Poss, SF, \square , [t].

Example: the Bus Scenario as Basic Action Theory

■ What is true, what is known initially:

```
\begin{array}{l} \Sigma_0 \ \stackrel{\text{\tiny def}}{=} \ pos = Central \land Route(M50, Uni) \\ \Sigma_1 \ \stackrel{\text{\tiny def}}{=} \ pos = Central \end{array}
```

Example: the Bus Scenario as Basic Action Theory

■ What is true, what is known initially:

$$\begin{array}{l} \Sigma_0 \ \stackrel{\text{\tiny def}}{=} \ pos = Central \land Route(M50, Uni) \\ \Sigma_1 \ \stackrel{\text{\tiny def}}{=} \ pos = Central \end{array}$$

- $\blacksquare \ \Box \ [a] \mathsf{On}(b) \leftrightarrow a = \mathsf{getOn}(b) \lor (\mathsf{On}(b) \land a \neq \mathsf{getOff})$
- $\Box[a] \mathrm{pos} = p \leftrightarrow \exists b \left(a = \mathrm{goTo}(b, p) \land \mathrm{On}(b) \right) \lor \\ \left(\mathrm{pos} = p \land \neg \exists d \exists b \left(a = \mathrm{goTo}(b, d) \land \mathrm{On}(b) \right) \right)$
- $\square \operatorname{Poss}(a) \leftrightarrow (\exists b \, a = \operatorname{getOn}(b) \rightarrow \forall b \, \neg \operatorname{On}(b)) \land (a = \operatorname{getOff} \rightarrow \exists b \, \operatorname{On}(b)) \land \forall b \, \forall d \, (a = \operatorname{goTo}(b, d) \rightarrow \operatorname{Route}(b, d))$

Example: the Bus Scenario as Basic Action Theory

■ What is true, what is known initially:

$$\Sigma_0 \stackrel{\text{def}}{=} pos = Central \land Route(M50, Uni)$$

 $\Sigma_1 \stackrel{\text{def}}{=} pos = Central$

- $\square [a] On(b) \leftrightarrow a = getOn(b) \lor (On(b) \land a \neq getOff)$
- $\Box [a] pos = p \leftrightarrow \exists b \left(a = goTo(b, p) \land On(b) \right) \lor \\ \left(pos = p \land \neg \exists d \exists b \left(a = goTo(b, d) \land On(b) \right) \right)$
- $\square \operatorname{Poss}(a) \leftrightarrow (\exists b \, a = \operatorname{getOn}(b) \rightarrow \forall b \, \neg \operatorname{On}(b)) \land (a = \operatorname{getOff} \rightarrow \exists b \, \operatorname{On}(b)) \land \forall b \, \forall d \, (a = \operatorname{goTo}(b, d) \rightarrow \operatorname{Route}(b, d))$
- You can ask and learn whether the bus stops at a destination:

$$\Box \operatorname{SF}(a) \leftrightarrow \forall b \, \forall d \, \big(a = \operatorname{ask}(b, d) \to \operatorname{Route}(b, d) \big)$$

Regression of Knowledge

Theorem: knowledge after action

$$\models [a]\mathbf{K}\alpha \leftrightarrow (\mathrm{SF}(a) \to \mathbf{K}(\mathrm{SF}(a) \to [a]\alpha)) \land (\neg \mathrm{SF}(a) \to \mathbf{K}(\neg \mathrm{SF}(a) \to [a]\alpha))$$

Looks like a successor-state axiom, but it's a theorem!

Regression of Knowledge

Theorem: knowledge after action

$$\models [a]\mathbf{K}\alpha \leftrightarrow (\mathrm{SF}(a) \to \mathbf{K}(\mathrm{SF}(a) \to [a]\alpha)) \land (\neg \mathrm{SF}(a) \to \mathbf{K}(\neg \mathrm{SF}(a) \to [a]\alpha))$$

Looks like a successor-state axiom, but it's a theorem!

Definition: regression operator, subjective part

- $\blacksquare \mathcal{R}[\langle\rangle,\mathbf{K}\alpha] \stackrel{\text{def}}{=} \mathbf{K}\mathcal{R}[\langle\rangle,\alpha]$
- $\mathcal{R}[z \cdot r, \mathbf{K}\alpha] \stackrel{\text{def}}{=} \mathcal{R}[z, (SF(r) \to \mathbf{K}(SF(r) \to [r]\alpha))] \land \mathcal{R}[z, (\neg SF(r) \to \mathbf{K}(\neg SF(r) \to [r]\alpha))]$
- $\blacksquare \ \mathcal{R}[z, \mathrm{SF}(t)] \stackrel{\text{def}}{=} \mathcal{R}[z, \varphi_t^a]$

The Regression Result with Knowledge

Theorem: regression

Let $\Sigma_0 \wedge \Sigma_{dyn} \wedge \mathbf{O}(\Sigma_1 \wedge \Sigma_{dyn})$ be a basic action theory over \mathcal{F} . Let α mention only fluents from $\mathcal{F} \cup \{\text{Poss}, \text{SF}\}$ and no \mathbf{O} or \square . $\Sigma_0 \wedge \Sigma_{dyn} \wedge \mathbf{O}(\Sigma_1 \wedge \Sigma_{dyn}) \models \alpha \iff \Sigma_0 \wedge \mathbf{O}\Sigma_1 \models \mathcal{R}[\langle \rangle, \alpha]$

The Regression Result with Knowledge

Theorem: regression

Let $\Sigma_0 \wedge \Sigma_{dyn} \wedge \mathbf{O}(\Sigma_1 \wedge \Sigma_{dyn})$ be a basic action theory over \mathcal{F} . Let α mention only fluents from $\mathcal{F} \cup \{Poss, SF\}$ and no \mathbf{O} or \square . $\Sigma_0 \wedge \Sigma_{dyn} \wedge \mathbf{O}(\Sigma_1 \wedge \Sigma_{dyn}) \models \alpha \iff \Sigma_0 \wedge \mathbf{O}\Sigma_1 \models \mathcal{R}[\langle \rangle, \alpha]$

Reasoning about actions + knowledge

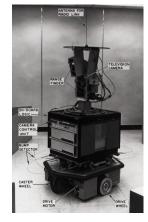
- + Regression (eliminates [t])
- + Representation theorem (eliminates K)
- = Non-modal reasoning!

Overview of the Lecture

- Three Problems
- The Situation Calculus
- Projection by regression
- Projection by progression
- Knowledge and sensing
- Concluding words

Relationship to Planning

- Modelling dynamic systems is core AI
- In the beginning (1950ies, 1960ies): reasoning about action = planning
- McCarthy's situation calculus (1963, 1969): too expressive, impractical
- Shakey introduced STRIPS for planning
- Reasoning about action and planning diverged
- Past years: they converge again
 - Reasoning action gets more efficient
 - Planning gets more expressive
 - Both sides benefit



Relevant Questions?

Reasoning about Knowledge

Why not classical logic?

Semantics of knowledge

- How is $\mathbf{K}\alpha$ defined?
- How is $\mathbf{O}\alpha$ defined?
- How does quantification work?

Knowing that vs knowing what/who

- What's the difference?
- Why is that semantic difference?

Representation theorem

- What are known instances?
- How does RES do it?

Logical Omniscience

- What does it mean?
 - Why is it a problem?

Limited belief I

- Why more worlds?
- What is true/false support?
- When good/bad complexity?
- Why?

Limited belief II

- What's unit propagation?
- What's subsumption?
- How is $\mathbf{K}_k \alpha$ defined?
- Soundness vs completeness?

Implementation

- How does DPLL work?
- Idea behind watched lits?
- Idea behind CDCL?

Reasoning about actions

What are the problems?

Solution of frame problem

- What's a succ.-state axiom?
- What's a basic action theory?

Projection

- What's the projection task?
- What are the approaches?
- How does regression work?

Semantics of actions

- How are worlds defined?
- What does SF(t) mean?
- How is $\mathbf{K}\alpha$ defined in sitcalc?

This list is not intended to be exhaustive.