COMP4418 17s2 • Week 13 - Exercises Planning

1. (Combinatorics)

Show that the total number of states for the domain corresponding to the picture below is $8 n(n!)$ if there are $n>0$ containers.

COMP4418 17s2 • Week 13 • Sample Solutions Planning

(a) (Combinatorics)

There are n ! different ways to sort n containers into a specific order c_{1}, \ldots, c_{n}. Each of these orderings can be configured in the following ways:

- There are $n+1$ different ways to distribute c_{1}, \ldots, c_{n} onto p 1 and p 2 :
- all on p1
$-c_{1}, \ldots, c_{n-1}$ on p1 and c_{n} on p2
$-c_{1}, \ldots, c_{n-2}$ on p1 and c_{n-1}, c_{n} on p2
- ...
- all on p2
- There are n different ways to distribute c_{1}, \ldots, c_{n-1} onto p 1 and p 2 , with c_{n} held by the crane.
- There are n different ways to distribute c_{1}, \ldots, c_{n-1} onto p 1 and p 2 , with c_{n} loaded onto the cart.
- There are $n-1$ different ways to distribute c_{1}, \ldots, c_{n-2} onto p 1 and p 2 , with c_{n-1} held by the crane and c_{n} loaded onto the cart.
Taken together, we obtain $4 n(n!)$ configurations. The cart can be at either loc1 or loc2, which results in a total of $8 n(n!)$ different states.

COMP4418 17s2 • Week 13 - Sample Solutions to Class Exercises Planning

1. Blocks World

(a) Predicates:

on (x, y)	block x is on block y
$\operatorname{table}(x)$	block x is on the table
clear (x)	block x is clear
holding (x)	the robot arm is holding block x
handempty	the robot arm is free

(b) Operators:

```
unstack(x,y)
    precond: handempty, clear(x), on(x,y)
    effect: \neghandempty, holding(x), \negclear(x), \negon(x,y), clear(y)
stack(x,y)
    precond: holding(x), clear(y)
    effect: \negholding(x), handempty, on(x,y), clear(x), \negclear(y)
pickup(x)
    precond: handempty, table(x), clear(x)
    effect: \neghandempty, holding(x), \negclear(x), ᄀtable(x)
putdown(x)
    precond: holding(x)
    effect: \negholding(x), handempty, clear(x), table(x)
```

(c) Solution plan:

〈putdown(d), unstack(c, a), putdown(c), pickup(b), stack(b, c), pickup(a), stack(a, b) 〉

2. Variable Assignment Domain

(a) A shortest path to a solution (written as sequence of states $\left[\operatorname{value}\left(a,{ }_{-}\right)\right.$, value $\left(b,{ }_{-}\right)$, value $\left.\left(c,{ }_{-}\right)\right]$: $[3,5,0] \rightarrow[3,5,5] \rightarrow[3,3,5] \rightarrow[5,3,5]$ (3 actions)
(b) Without loop-checking, there are infinite paths. With loop-checking, the longest paths have 7 actions, for example,
$[3,5,0] \rightarrow[3,3,0] \rightarrow[3,0,0] \rightarrow[3,0,3] \rightarrow[0,0,3] \rightarrow[0,3,3] \rightarrow[0,3,0] \rightarrow[0,0,0]$

