
ENGG1811 © UNSW, CRICOS Provider No: 00098G1 W10 slide 1

Ass2:

Getting Started Help for

Part-2 (a, b, c, d)

ENGG1811 Computing for Engineers

Part-2(a)
For this task, you are asked to write a Matlab function calcDiscomfort (which should be in a file

called calcDiscomfort.m) which has the declaration:

function discomfort = calcDiscomfort(time, yRoad, ms, mu, kt, k, b, c)

• The 8 input parameters are identical to those for the function simulateQC.

• The function returns a scalar which measures the discomfort level for the given vehicle and

suspension parameters.

• The first step of calcDiscomfort is to use the function simulateQC to perform a simulation,

i.e., using the following line of code:

[ys, yu, vs, vu] = simulateQC(time,yRoad,ms,mu,kt,k,b,c);

For example,

• Once this is done, you can use the vector vs to determine the acceleration.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 2

Part-2(a)

• Let us assume that the vector vs has n elements (how to calculate n? size(vs) ?)

• let us use dt to denote the time increment used in the vector time (how to

calculate dt?)

• We can use vs to calculate the acceleration at (n-1) time instances:

a(i) = (vs(i+1)-vs(i))/dt

where i = 1, 2, ..., n-1

vs(i) is the i-th element of the vector vs and

a(i) is the i-th element of the acceleration vector a.

The discomfort level is then given by

discomfort = a(1)2 + a(2)2 + ... + a(n-2)2 + a(n-1)2

This should be the output of the function calcDiscomfort. Intuitively, this calculation

says the discomfort is higher if the acceleration is higher.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 3

Part-2(a)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 4

Part-2(a)

• You can use the script testCalcDiscomfort.m (a file in assign2.zip) to test whether

your calcDiscomfort function is working correctly.

• If the reported error is small, i.e. less than 10-8, then it should be fine.

• Important requirement on implementation:

– The calculation of the discomfort level from the vector vs can be done without
using any loops.

– However, if you are not comfortable with vectorization, first implement it
using a loop, and later change it to vectorization, if you could.

– You will only receive full marks for this part if the calculation is
done without using loops, otherwise you will receive a reduced mark if loops
are used.

– The Matlab built-in function sum is useful here.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 5

Part-2(b):
Calculating discomfort level for many pairs of (inertance b, damping coefficient c)

• The function calcDiscomfort allows you to determine the discomfort level

for each set of suspension parameters: spring stiffness k, damping

coefficient c and inertance b.

• For simplicity, we will not change the value of k.

• We will calculate the discomfort level for many different pairs of

(inertance,damping coefficient) or (b,c) values.

The steps for Task 2b are:

• Create a vector of equally spaced inertances.

The first value is at bLower and the last value is bUpper.

The number of inertances is given by nInerterValues.

b =

These three parameters are specified in Matlab script assignment2SampleParameters.m.

(Note: The Matlab script assignment2.m reads in these parameters so you can just use

them. It is a good idea for you to go through the file assignment2SampleParameters.m to

see what parameters have been defined. In particular, you need to know

that assignment2SampleParameters.m does not specify the values of b and c.)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 6

• Create a vector of equally spaced damping coefficients.

The first value is at cLower and the last value is cUpper.

The number of damping coefficients is given by nDamperValues.

These three parameters are specified in Matlab

script assignment2SampleParameters.m.

c =

• Create a zero matrix discomfortLevels with

nInerterValues rows and nDamperValues columns.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 7

Part-2(b):
Calculating discomfort level for many pairs of (inertance b, damping coefficient c)

nInerterValues rows

nDamperValues columnsMatrix for discomfortLevels

• The (i,j) element of the matrix discomfortLevels,

i.e. discomfortLevels(i,j), should be assigned the discomfort level of a

suspension that uses the i-th inertance and j-th damping coefficient. You

can assume all other parameters are as specified.

discomfortLevels(i, j) = calcDiscomfort (time, yRoad, ms, mu, kt, k, b(i), c(j));

• You can use loops to complete this task.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 8

Part-2(b):
Calculating discomfort level for many pairs of (inertance b, damping coefficient c)

nInerterValues rows

nDamperValues columnsMatrix for discomfortLevels

% create vectors b and c, read the specs

b = ???? ;

c = ???? ;

% create zero matrix for discomfortLevels, read the specs

discomfortLevels = ???? ;

% Use two nested loops to calculate discomfortLevels for each combination of b and c values

for i = ????

for j = ????

???????

???????

end

end

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 9

Part-2(b):
Calculating discomfort level for many pairs of (inertance b, damping coefficient c)

Part-2(b)

• Please read the specs for information on how to

test your Task-2(b).

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 10

• From the matrix for discomfortLevels, find min and max discomfort levels.

Also find the corresponding values of b and c, for example: bBest, cBest,

bWorst, cWorst.

W9 slide 11

nInerterValues rows

nDamperValues columnsMatrix for discomfortLevels

Part-2(c):

Determining the (inertance, damping coefficient) pairs that give, respectively,

the best and worst comfort

Once you have obtained the best and worst (inertance, damping coefficient) pairs, do

the following

1. Use a Matlab disp statement to display the values of the inertance, damping

coefficient and discomfort level for the most comfortable suspension.

For example: use num2str to convert a number in to string before displaying.

display(['Most comfortable suspension: inertance = ‘, num2str(bBest) , …

2. Use a Matlab disp statement to display the values of the inertance, damping

coefficient and discomfort level for the least comfortable suspension.

3. Use simulateQC.m to obtain the car body movements ys of the best suspension.

Repeat that for the worst suspension. You should store the ys vectors of these two

configurations in two different vectors. You need both of them later, in the next

step as well as Task 3.

4. Plot a graph in Matlab (in figure 1) with time on the horizontal axis and

displacement on the vertical axis. The graph should show three curves: (i) The

road surface; (ii) The displacement of the car body ys for the most comfortable

configuration; (iii) The displacement of the car body ys for the least comfortable

configuration.
W9 slide 12

Part-2(d):
Displaying and plotting the results

