3. Basics of Parameterized Complexity COMP6741: Parameterized and Exact Computation

Serge Gaspers

19T3

Contents

	Introduction	1
	1.1 Vertex Cover	
	1.2 Coloring	
	1.3 Clique	
	1.4 Δ -Clique	3
2	Basic Definitions	4
3	Further Reading	4

1 Introduction

1.1 Vertex Cover

A vertex cover in a graph G = (V, E) is a subset of its vertices $S \subseteq V$ such that every edge of G has at least one endpoint in S.

Vertex Cover		
Input:	A graph $G = (V, E)$ and an integer k	
Parameter:	k	
Question:	Does G have a vertex cover of size k ?	

Algorithms for Vertex Cover

- brute-force: $O^*(2^n)$
- brute-force: $O^*(n^k)$
- vc1: $O^*(2^k)$ (cf. Lecture 1)
- vc2: $O^*(1.4656^k)$ (cf. Lecture 1)
- fastest known: $O(1.2738^k + k \cdot n)$ [CKX10]

Running times in practice

n = 1000 vertices, k = 20 parameter

	Running Time	
Theoretical	Nb of Instructions	Real
2^n	$1.07 \cdot 10^{301}$	$4.941 \cdot 10^{282}$ years
n^k	10^{60}	$4.611 \cdot 10^{41} \text{ years}$
$2^k \cdot n$	$1.05 \cdot 10^9$	15.26 milliseconds
$1.4656^k \cdot n$	$2.10\cdot 10^6$	0.31 milliseconds
$1.2738^k + k \cdot n$	$2.02\cdot 10^4$	0.0003 milliseconds

Notes:

– We assume that 2^{36} instructions are carried out per second.

– The Big Bang happened roughly $13.5 \cdot 10^9$ years ago.

Goal of Parameterized Complexity

Confine the combinatorial explosion to a parameter k.

(1) Which problem–parameter combinations are fixed-parameter tractable (FPT)? In other words, for which problem–parameter combinations are there algorithms with running times of the form

 $f(k) \cdot n^{O(1)},$

where the f is a computable function independent of the input size n? (2) How small can we make the f(k)?

Examples of Parameters

A Parameterized Problem Input: an instance of the problem Parameter: a parameter Question: a YES–NO question about the instance and the parameter

- A parameter can be
 - solution size
 - input size (trivial parameterization)
 - related to the structure of the input (maximum degree, treewidth, branchwidth, genus, ...)
 - combinations of parameters
 - etc.

1.2 Coloring

A k-coloring of a graph G = (V, E) is a function $f : V \to \{1, 2, ..., k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Coloring	
Input:	Graph G , integer k
Parameter:	k
Question:	Does G have a k -coloring?

Brute-force: $O^*(k^n)$, where n = |V(G)|. Fastest known: $O^*(2^n)$ by inclusion-exclusion [BHK09] FPT?

Coloring is probably not FPT

- Known: Coloring is NP-complete when k = 3
- Suppose there was a $O^*(f(k))$ -time algorithm for COLORING
 - Then, 3-COLORING can be solved in $O^*(f(3)) \subseteq O^*(1)$ time
 - Therefore, P = NP
- Therefore, COLORING is not FPT unless P = NP

1.3 Clique

A *clique* in a graph G = (V, E) is a subset of its vertices $S \subseteq V$ such that every two vertices from S are adjacent in G.

CLIQUE Input: Graph G = (V, E), integer kParameter: kQuestion: Does G have a clique of size k?

Is CLIQUE NP-complete when k is a fixed constant? Is it FPT?

Algorithm for Clique

- For each subset $S \subseteq V$ of size k, check whether all vertices of S are adjacent
- Running time: $O^*\left(\binom{n}{k}\right) \subseteq O^*(n^k)$
- When $k \in O(1)$, this is polynomial
- But: we do not currently know an FPT algorithm for CLIQUE
- Since CLIQUE is W[1]-hard, we believe it is not FPT. (See lecture on W-hardness.)

1.4 Δ -Clique

A different parameter for Clique

Is Δ -CLIQUE FPT?

Algorithm for Δ -Clique

Input: A graph G and an integer k. **Output:** YES if G has a clique of size k, and NO otherwise.

Running time: $O^*((\Delta+1)^k) \subseteq O^*((\Delta+1)^{\Delta})$. (FPT for parameter Δ)

2 Basic Definitions

Main Parameterized Complexity Classes

 $n{:}$ instance size

k: parameter

P: class of problems that can be solved in $n^{O(1)}$ time

FPT: class of parameterized problems that can be solved in $f(k) \cdot n^{O(1)}$ time XP: class of parameterized problems that can be solved in $f(k) \cdot n^{g(k)}$ time ("polynomial when k is a constant")

$$\mathbf{P} \subseteq \mathbf{FPT} \subseteq \mathbf{W}[1] \subseteq \mathbf{W}[2] \cdots \subseteq \mathbf{W}[P] \subseteq \mathbf{XP}$$

Known: If FPT = W[1], then the Exponential Time Hypothesis fails, i.e. 3-SAT can be solved in $2^{o(n)}$ time, where n is the number of variables.

Note: We assume that f is *computable* and *non-decreasing*.

3 Further Reading

- Chapter 1, Introduction in [Cyg+15]
- Chapter 2, The Basic Definitions in [DF13]
- Chapter I, Foundations in [Nie06]
- Preface in [FG06]

References

[BHK09] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. "Set Partitioning via Inclusion-Exclusion". In: SIAM Journal on Computing 39.2 (2009), pp. 546–563.

- [CKX10] Jianer Chen, Iyad A. Kanj, and Ge Xia. "Improved upper bounds for vertex cover". In: Theoretical Computer Science 411.40-42 (2010), pp. 3736–3756.
- [Cyg+15] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- [DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- [FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
- [Nie06] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.