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Week 5 recap

Hoare Logic:

Simple imperative language L
Hoare triple {ϕ}P {ψ} (SYNTAX)

Derivation rules (PROOFS)

Semantics for Hoare logic (SEMANTICS)
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The language L

The language L is a simple imperative programming language
made up of four statements:

Assignment: x :=e
where x is a variable and e is an arithmetic
expression.

Sequencing: P;Q

Conditional: if b then P else Q fi
where b is a boolean expression.

While: while b do P od
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Hoare triple (Syntax)

{ϕ}P {ψ}

Intuition:
If ϕ holds in a state of some computational model
then ψ holds in the state reached after a successful execution of P.

` {ϕ}P {ψ}

{ϕ}P {ψ} is derivable using the proof rules of Hoare Logic

|= {ϕ}P {ψ}

{ϕ}P {ψ} is valid according to the semantic interpretation.
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Hoare logic rules

(ass)
{ϕ[e/x ]} x := e {ϕ}

{ϕ}P {ψ} {ψ}Q {ρ}
(seq)

{ϕ}P;Q {ρ}

{ϕ ∧ g}P {ψ} {ϕ ∧ ¬g}Q {ψ}
(if)

{ϕ} if g then P else Q fi {ψ}
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Hoare logic rules

(ass)
{ϕ(e)} x := e {ϕ(x)}

{ϕ}P {ψ} {ψ}Q {ρ}
(seq)
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(if)
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Hoare logic rules

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

ϕ′ → ϕ {ϕ}P {ψ} ψ → ψ′
(cons)

{ϕ′}P {ψ′}
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Hoare logic semantics

Env: set of environments (functions that map variables to
numeric values)

〈·〉 : Predicates→ Pow(Env), given by:

〈ϕ〉 := {η ∈ Env : [[ϕ]]η = true}.

[[·]] : Programs ∪Predicates→ Pow(Env×Env)
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Hoare logic semantics

[[·]] : Programs ∪Predicates→ Pow(Env×Env)

For predicates: [[ϕ]] = {(η, η) : η ∈ 〈ϕ〉}

For programs: Inductively:

[[P;Q]] = [[P]]; [[Q]]

[[if b then P else Q fi]] = [[b;P]] ∪ [[¬b;Q]]

[[while b do P od]] = [[b;P]]∗; [[¬b]]

where R; S is the relational composition of R and S , and R∗ is
the transitive closure of R...
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Transitive closure

Given a binary relation R ⊆ A× A we define Rn inductively:

R0 = ∆ the diagonal relation

R i+1 = R i ;R for i ≥ 0.

The transitive closure, R∗ is then defined to be:

R∗ :=
⋃∞

i=0 R
i

= {(x , y) : (x , y) ∈ R i for some i ∈ N}.
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Need to know for this course

Write programs in L.

Give proofs using the Hoare logic rules (full and outline)

Definition of [[·]]
Definition of composition and transitive closure
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