COMP2111 Week 6

Term 1, 2019
Week 5 recap

Week 5 recap

Hoare Logic:
@ Simple imperative language £
@ Hoare triple {¢} P {¢} (SYNTAX)
@ Derivation rules (PROOFS)
@ Semantics for Hoare logic (SEMANTICS)

The language £

The language L is a simple imperative programming language
made up of four statements:
Assignment: x :=e
where x is a variable and e is an arithmetic
expression.
Sequencing: P;Q
Conditional: if b then P else Q fi
where b is a boolean expression.
While: while b do P od

Hoare triple (Syntax)

{w} P{y}

Intuition:
If © holds in a state of some computational model
then ¢ holds in the state reached after a successful execution of P.

Hoare triple (Syntax)

{w} P{y}

Intuition:
If © holds in a state of some computational model
then ¢ holds in the state reached after a successful execution of P.

F{e} P{v}
{¢} P {1} is derivable using the proof rules of Hoare Logic

Hoare triple (Syntax)

{w} P{y}

Intuition:
If © holds in a state of some computational model
then ¢ holds in the state reached after a successful execution of P.

F{e} P{v}
{¢} P {1} is derivable using the proof rules of Hoare Logic

={»} P{v}

{¢} P {1} is valid according to the semantic interpretation.

Hoare logic rules

(ass)

{(P[G/X]} X:=e {SO}

[}P{Y} {¥}Q{p)

{0} P: Q{p} (seq)

{pngtP{v} {pn-g}Q{v}

{o}if g then P else Q fi {1} (if)

Hoare logic rules

(ass)

{o(e)} x = e {p(x)}

[}P{Y} {¥}Q{p)

{0} P: Q{p} (seq)

{pngtP{v} {pn-g}Q{v}

{o}if g then P else Q fi {1} (if)

Hoare logic rules

{png}P{s}
{,} while g do P od {© A =g} (loop)
poe AW P2T (o)

{¢"} P{Y'}

Hoare logic semantics

ENV: set of environments (functions that map variables to
numeric values)

Hoare logic semantics

ENV: set of environments (functions that map variables to
numeric values)

() : PREDICATES — Pow(ENV), given by:

(@) ={n € Env : [¢]” = true}.

Hoare logic semantics

ENV: set of environments (functions that map variables to
numeric values)

() : PREDICATES — Pow(ENV), given by:

(@) ={n € Env : [¢]” = true}.

[] : PROGRAMS U PREDICATES — Pow(ENV x ENV)

Hoare logic semantics

[] : PROGRAMS U PREDICATES — Pow(ENV x ENV)

For predicates: o] = {(n,m) : n € (¢)}

Hoare logic semantics

[] : PROGRAMS U PREDICATES — Pow(ENV x ENV)

For predicates: o] = {(n,m) : n € (¢)}

For programs: Inductively:

Hoare logic semantics

[] : PROGRAMS U PREDICATES — Pow(ENV x ENV)

For predicates: o] = {(n,m) : n € (¢)}

For programs: Inductively:

o [P Q] =[Pl IQ]

where R; S is the relational composition of R and S

Hoare logic semantics

[] : PROGRAMS U PREDICATES — Pow(ENV x ENV)

For predicates: o] = {(n,m) : n € (¢)}

For programs: Inductively:
o [P QI =[Pl Q]
o [if b then P else Q fi] = [b; P] U [-b; Q]

where R; S is the relational composition of R and S

Hoare logic semantics

[] : PROGRAMS U PREDICATES — Pow(ENV x ENV)

For predicates: o] = {(n,m) : n € (¢)}

For programs: Inductively:

o [P: Q] =PI €]

o [if b then P else Q fi] = [b; P] U [-b; Q]

e [while b do P od] = [b; P]*; [-b]
where R; S is the relational composition of R and S, and R* is
the transitive closure of R...

Transitive closure

Given a binary relation R C A x A we define R" inductively:
@ RY = A the diagonal relation
e Rt =R:R for i > 0.

The transitive closure, R* is then defined to be:

R* = U, R

= {(x,y) : (x,y) € R' for some i € N}.

Need to know for this course

o Write programs in L.
@ Give proofs using the Hoare logic rules (full and outline)
o Definition of -]

@ Definition of composition and transitive closure

