COMP2111 Week 6 Term 1, 2019 Week 5 recap

<ロ> (四) (四) (三) (三) (三) 三

Week 5 recap

(日) (四) (王) (王) (王)

Hoare Logic:

- \bullet Simple imperative language ${\cal L}$
- Hoare triple $\{\varphi\} P \{\psi\}$ (SYNTAX)
- Derivation rules (PROOFS)
- Semantics for Hoare logic (SEMANTICS)

The language ${\cal L}$

The language ${\cal L}$ is a simple imperative programming language made up of four statements:

Assignment: x := e
 where x is a variable and e is an arithmetic
 expression.
Sequencing: P;Q
Conditional: if b then P else Q fi

where b is a boolean expression.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

While: while *b* do *P* od

Hoare triple (Syntax)

 $\left\{\varphi\right\} \textit{P}\left\{\psi\right\}$

Intuition:

If φ holds in a state of some computational model then ψ holds in the state reached after a successful execution of *P*.

$\vdash \{\varphi\} P \{\psi\}$

 $\{arphi\} \, {\sf P} \, \{\psi\}$ is **derivable** using the proof rules of Hoare Logic

 $\models \{\varphi\} \operatorname{P} \{\psi\}$

 $\{arphi\} \, {\sf P} \, \{\psi\}$ is valid according to the semantic interpretation.

Hoare triple (Syntax)

 $\left\{\varphi\right\} P\left\{\psi\right\}$

Intuition:

If φ holds in a state of some computational model then ψ holds in the state reached after a successful execution of P.

$\vdash\left\{ \varphi\right\} P\left\{ \psi\right\}$

 $\left\{\varphi\right\} P\left\{\psi\right\}$ is **derivable** using the proof rules of Hoare Logic

$\models \{\varphi\} P \{\psi\}$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

 $\{\varphi\} P \{\psi\}$ is **valid** according to the semantic interpretation.

Hoare triple (Syntax)

 $\left\{\varphi\right\} \textit{P}\left\{\psi\right\}$

Intuition:

If φ holds in a state of some computational model then ψ holds in the state reached after a successful execution of P.

$\vdash\left\{ \varphi\right\} P\left\{ \psi\right\}$

 $\left\{\varphi\right\} P\left\{\psi\right\}$ is **derivable** using the proof rules of Hoare Logic

 $\models \{\varphi\} P \{\psi\}$

 $\{\varphi\} P \{\psi\}$ is **valid** according to the semantic interpretation.

Hoare logic rules

$$\frac{1}{\left\{\varphi[e/x]\right\}x := e\left\{\varphi\right\}} \quad (ass)$$

$$\frac{\{\varphi\} P\{\psi\} \{\psi\} Q\{\rho\}}{\{\varphi\} P; Q\{\rho\}}$$
(seq)

$$\frac{\{\varphi \land g\} P\{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi}\{\psi\}} \quad \text{(if)}$$

◆□> ◆□> ◆目> ◆目> ●目 ● ● ●

Hoare logic rules

$$\overline{\{\varphi(e)\}\, x := e\,\{\varphi(x)\}} \quad (ass)$$

$$\frac{\{\varphi\} P \{\psi\} \quad \{\psi\} Q \{\rho\}}{\{\varphi\} P; Q \{\rho\}} \quad (seq)$$

$$\frac{\{\varphi \land g\} P\{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi}\{\psi\}} \quad \text{(if)}$$

Hoare logic rules

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

$$\frac{\varphi' \to \varphi \quad \{\varphi\} P \{\psi\} \quad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \quad \text{(cons)}$$

$\mathrm{E}\mathrm{N}\mathrm{V}\mathrm{:}$ set of environments (functions that map variables to numeric values)

 $\langle \cdot \rangle$: PREDICATES \rightarrow Pow(ENV), given by: $\langle \varphi \rangle := \{ \eta \in \text{ENV} : \llbracket \varphi \rrbracket^{\eta} = \texttt{true} \}$

 $\llbracket \cdot
bracket$: Programs \cup Predicates \rightarrow Pow(Env \times Env)

 $\mathrm{Env:}$ set of environments (functions that map variables to numeric values)

 $\langle \cdot \rangle : \text{PREDICATES} \to \mathsf{Pow}(\text{ENV}), \text{ given by:}$ $\langle \varphi \rangle := \{ \eta \in \text{ENV} : \llbracket \varphi \rrbracket^{\eta} = \texttt{true} \}.$

 $\llbracket \cdot
bracket$: Programs U Predicates ightarrow Pow(Env imes Env)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

 $\mathrm{Env:}$ set of environments (functions that map variables to numeric values)

 $\langle \cdot \rangle : \text{PREDICATES} \to \mathsf{Pow}(\text{Env}), \text{ given by:}$ $\langle \varphi \rangle := \{ \eta \in \text{Env} : \llbracket \varphi \rrbracket^{\eta} = \texttt{true} \}.$

 $\llbracket \cdot \rrbracket : \operatorname{Programs} \cup \operatorname{Predicates} \to \mathsf{Pow}(\operatorname{Env} \times \operatorname{Env})$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $\llbracket \cdot \rrbracket : \operatorname{PROGRAMS} \cup \operatorname{PREDICATES} \to \mathsf{Pow}(\operatorname{Env} \times \operatorname{Env})$ For predicates: $\llbracket \varphi \rrbracket = \{(\eta, \eta) : \eta \in \langle \varphi \rangle\}$

For programs: Inductively:

- $\circ [P; Q] = [P]; [Q]$
- $[if b then P else Q fi] = [b; P] \cup [-b; Q]$
- $|b_i| \in [b_i \cap P_i] = |b_i \cap P_i| = |b_i \cap P_i|$

where R(5) is the relational composition of R and S_{1} and R^{2} is the transitive closure of R_{12} .

 $\llbracket \cdot \rrbracket : \operatorname{Programs} \cup \operatorname{Predicates} \to \mathsf{Pow}(\operatorname{Env} \times \operatorname{Env})$

For predicates: $\llbracket \varphi \rrbracket = \{ (\eta, \eta) : \eta \in \langle \varphi \rangle \}$

For programs: Inductively:

• $\llbracket P; Q \rrbracket = \llbracket P \rrbracket; \llbracket Q \rrbracket$

- $\llbracket \mathbf{if} \ b \ \mathbf{then} \ P \ \mathbf{else} \ Q \ \mathbf{fi} \rrbracket = \llbracket b; P \rrbracket \cup \llbracket \neg b; Q \rrbracket$
- \llbracket while *b* do *P* od $\rrbracket = \llbracket b; P \rrbracket^*; \llbracket \neg b \rrbracket$

where R; S is the **relational composition** of R and S, and R^* is the **transitive closure of** R...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- $\llbracket \cdot \rrbracket : \operatorname{Programs} \cup \operatorname{Predicates} \to \operatorname{Pow}(\operatorname{Env} \times \operatorname{Env})$
- For predicates: $\llbracket \varphi \rrbracket = \{ (\eta, \eta) : \eta \in \langle \varphi \rangle \}$

For programs: Inductively:

- $\llbracket P; Q \rrbracket = \llbracket P \rrbracket; \llbracket Q \rrbracket$
- $\llbracket \mathbf{if} \ b \ \mathbf{then} \ P \ \mathbf{else} \ Q \ \mathbf{fi} \rrbracket = \llbracket b; P \rrbracket \cup \llbracket \neg b; Q \rrbracket$
- \llbracket while *b* do *P* od $\rrbracket = \llbracket b; P \rrbracket^*; \llbracket \neg b \rrbracket$

where R; S is the **relational composition** of R and S, and R^* is the transitive closure of R...

 $\llbracket \cdot \rrbracket : \operatorname{Programs} \cup \operatorname{Predicates} \to \mathsf{Pow}(\operatorname{Env} \times \operatorname{Env})$

For predicates: $\llbracket \varphi \rrbracket = \{ (\eta, \eta) : \eta \in \langle \varphi \rangle \}$

For programs: Inductively:

- $\bullet \ \llbracket P; Q \rrbracket = \llbracket P \rrbracket; \llbracket Q \rrbracket$
- $\llbracket \mathbf{if} \ b \ \mathbf{then} \ P \ \mathbf{else} \ Q \ \mathbf{fi} \rrbracket = \llbracket b; P \rrbracket \cup \llbracket \neg b; Q \rrbracket$

• [while *b* do *P* od] = [[b; P]^{*}; [$\neg b$]

where R; S is the **relational composition** of R and S; and R^* is the transitive closure of R...

 $\llbracket \cdot \rrbracket : \operatorname{Programs} \cup \operatorname{Predicates} \to \mathsf{Pow}(\operatorname{Env} \times \operatorname{Env})$

For predicates: $\llbracket \varphi \rrbracket = \{ (\eta, \eta) : \eta \in \langle \varphi \rangle \}$

For programs: Inductively:

- $\bullet \ \llbracket P; Q \rrbracket = \llbracket P \rrbracket; \llbracket Q \rrbracket$
- **[if** b then P else Q fi]] = **[**b; P]] \cup **[** \neg b; Q]]
- [[while b do P od]] = [[b; P]]^{*}; [[$\neg b$]]

where R; S is the **relational composition** of R and S, and R^* is the **transitive closure of** R...

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Transitive closure

Given a binary relation $R \subseteq A \times A$ we define R^n inductively:

- $R^0 = \Delta$ the diagonal relation
- $R^{i+1} = R^i$; *R* for $i \ge 0$.

The **transitive closure**, R^* is then defined to be:

 $R^* := \bigcup_{i=0}^{\infty} R^i$ $= \{(x, y) : (x, y) \in R^i \text{ for some } i \in \mathbb{N}\}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Need to know for this course

- \bullet Write programs in $\mathcal L.$
- Give proofs using the Hoare logic rules (full and outline)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Definition of $\llbracket \cdot \rrbracket$
- Definition of composition and transitive closure