COMP2111 Week 6
Term 1, 2019
Week 5 recap
Week 5 recap

Hoare Logic:

- Simple imperative language \mathcal{L}
- Hoare triple $\{ \varphi \} P \{ \psi \}$ (SYNTAX)
- Derivation rules (PROOFS)
- Semantics for Hoare logic (SEMANTICS)
The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x := e$

where x is a variable and e is an arithmetic expression.

Sequencing: $P;Q$

Conditional: if b then P else Q fi

where b is a boolean expression.

While: while b do P od
Hoare triple (Syntax)

\{\varphi\} \; P \; \{\psi\}

Intuition:
If φ holds in a state of some computational model
then ψ holds in the state reached after a successful execution of P.

$\vdash \{\varphi\} \; P \; \{\psi\}$

$\{\varphi\} \; P \; \{\psi\}$ is derivable using the proof rules of Hoare Logic

$\models \{\varphi\} \; P \; \{\psi\}$

$\{\varphi\} \; P \; \{\psi\}$ is valid according to the semantic interpretation.
Hoare triple (Syntax)

\[\{ \varphi \} \ P \ {\psi} \]

Intuition:
If \(\varphi \) holds in a state of some computational model
then \(\psi \) holds in the state reached after a successful execution of \(P \).

\(\vdash \{ \varphi \} \ P \ {\psi} \)

\(\{ \varphi \} \ P \ {\psi} \) is **derivable** using the proof rules of Hoare Logic

\(\vdash \{ \varphi \} \ P \ {\psi} \)

\(\{ \varphi \} \ P \ {\psi} \) is **valid** according to the semantic interpretation.
Hoare triple (Syntax)

\[
\{\varphi\} \quad P \quad \{\psi\}
\]

Intuition:
If \(\varphi\) holds in a state of some computational model then \(\psi\) holds in the state reached after a successful execution of \(P\).

\[\vdash \{\varphi\} \quad P \quad \{\psi\}\]

\(\{\varphi\} \quad P \quad \{\psi\}\) is **derivable** using the proof rules of Hoare Logic

\[\models \{\varphi\} \quad P \quad \{\psi\}\]

\(\{\varphi\} \quad P \quad \{\psi\}\) is **valid** according to the semantic interpretation.
Hoare logic rules

\[\{ \varphi[e/x] \} x := e \{ \varphi \} \]

(ass)

\[\{ \varphi \} P \{ \psi \} \quad \{ \psi \} Q \{ \rho \} \]

(seq)

\[\{ \varphi \} \text{if } g \text{ then } P \text{ else } Q \text{ fi } \{ \psi \} \]

(if)
Hoare logic rules

(ass)

\[
\{ \varphi(e) \} x := e \{ \varphi(x) \}
\]

(seq)

\[
\begin{array}{c}
\{ \varphi \} P \{ \psi \} \\
\{ \psi \} Q \{ \rho \}
\end{array}
\Rightarrow
\{ \varphi \} P; Q \{ \rho \}
\]

(if)

\[
\begin{array}{c}
\{ \varphi \land g \} P \{ \psi \} \\
\{ \varphi \land \neg g \} Q \{ \psi \}
\end{array}
\Rightarrow
\{ \varphi \} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{ \psi \}
\]
Hoare logic rules

\[
\frac{\{\varphi \land g\} \; P \; \{\varphi\}}{\{\varphi\} \\text{while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}
\]

\[
\frac{\varphi' \rightarrow \varphi \quad \{\varphi\} \; P \; \{\psi\} \quad \psi \rightarrow \psi'}{\{\varphi'\} \; P \; \{\psi'\}} \quad \text{(cons)}
\]
Hoare logic semantics

\textbf{Env}: set of environments (functions that map variables to numeric values)

\[\langle \cdot \rangle : \text{Predicates} \rightarrow \text{Pow(Env)}, \text{given by:} \]

\[\langle \varphi \rangle := \{ \eta \in \text{Env} : [\varphi]^\eta = \text{true} \}. \]

\[[\cdot] : \text{Programs} \cup \text{Predicates} \rightarrow \text{Pow(Env} \times \text{Env}) \]
Hoare logic semantics

\(\text{Env} \): set of environments (functions that map variables to numeric values)

\(\langle \cdot \rangle : \text{Predicates} \rightarrow \text{Pow}(\text{Env}) \), given by:

\[
\langle \varphi \rangle := \{ \eta \in \text{Env} : [\varphi]^{\eta} = \text{true} \}.
\]

\([\cdot] : \text{Programs} \cup \text{Predicates} \rightarrow \text{Pow}(\text{Env} \times \text{Env}) \)
Hoare logic semantics

\(\text{Env} \): set of environments (functions that map variables to numeric values)

\(\langle \cdot \rangle : \text{Predicates} \rightarrow \text{Pow}(\text{Env}) \), given by:

\[\langle \varphi \rangle := \{ \eta \in \text{Env} : [\varphi]^\eta = \text{true} \} \].

\([\cdot] : \text{Programs} \cup \text{Predicates} \rightarrow \text{Pow}(\text{Env} \times \text{Env}) \)
Hoare logic semantics

\[\boxed{\cdot} : \text{Programs} \cup \text{Predicates} \rightarrow \text{Pow}(\text{Env} \times \text{Env})\]

For predicates:
\[\boxed{\varphi} = \{(\eta, \eta) : \eta \in \langle \varphi \rangle\}\]

For programs: Inductively:

- \[\boxed{P; Q} = \boxed{P}; \boxed{Q}\]
- \[\boxed{\text{if } b \text{ then } P \text{ else } Q \text{ fi}} = \boxed{b; P} \cup \boxed{\neg b; Q}\]
- \[\boxed{\text{while } b \text{ do } P \text{ od}} = \boxed{b; P}^*; \boxed{\neg b}\]

where \(R \circ S\) is the relational composition of \(R\) and \(S\), and \(R^*\) is the transitive closure of \(R\).
Hoare logic semantics

\[\llbracket \cdot \rrbracket : \text{Programs} \cup \text{Predicates} \to \text{Pow}(\text{Env} \times \text{Env}) \]

For predicates: \(\llbracket \varphi \rrbracket = \{ (\eta, \eta) : \eta \in \langle \varphi \rangle \} \)

For programs: Inductively:

- \(\llbracket P; Q \rrbracket = \llbracket P \rrbracket ; \llbracket Q \rrbracket \)
- \(\llbracket \text{if } b \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \llbracket b \rrbracket ; \llbracket P \rrbracket \cup \llbracket \neg b \rrbracket ; Q \rrbracket \)
- \(\llbracket \text{while } b \text{ do } P \text{ od} \rrbracket = \llbracket b \rrbracket ; \llbracket P \rrbracket^* ; \llbracket \neg b \rrbracket \)

where \(R; S \) is the relational composition of \(R \) and \(S \), and \(R^* \) is the transitive closure of \(R \)...
Hoare logic semantics

$[\cdot]: \text{Programs} \cup \text{Predicates} \rightarrow \text{Pow(Env} \times \text{Env})$

For predicates: $[\varphi] = \{(\eta, \eta): \eta \in \langle \varphi \rangle\}$

For programs: Inductively:

- $[P; Q] = [P]; [Q]$
- $[\text{if } b \text{ then } P \text{ else } Q \text{ fi}] = [b; P] \cup [\neg b; Q]$
- $[\text{while } b \text{ do } P \text{ od}] = [b; P]^*; [\neg b]$

where $R; S$ is the relational composition of R and S, and R^* is the transitive closure of R...
Hoare logic semantics

\[[\cdot] : \text{Programs} \cup \text{Predicates} \to \text{Pow}(\text{Env} \times \text{Env}) \]

For predicates: \[[\varphi] = \{ (\eta, \eta) : \eta \in \langle \varphi \rangle \} \]

For programs: Inductively:

- \[[P; Q] = [P]; [Q] \]
- \[[\text{if } b \text{ then } P \text{ else } Q \text{ fi}] = [b; P] \cup [\neg b; Q] \]
- \[[\text{while } b \text{ do } P \text{ od}] = [b; P]^*; [\neg b] \]

where \(R; S \) is the relational composition of \(R \) and \(S \), and \(R^* \) is the transitive closure of \(R \)...
Hoare logic semantics

\[[\cdot] : \text{Programs} \cup \text{Predicates} \rightarrow \text{Pow}(\text{Env} \times \text{Env}) \]

For predicates: \([\varphi] = \{(\eta, \eta) : \eta \in \langle \varphi \rangle \} \)

For programs: Inductively:

- \([P; Q] = [P]; [Q] \)
- \([\text{if } b \text{ then } P \text{ else } Q \text{ fi}] = [b; P] \cup [\neg b; Q] \)
- \([\text{while } b \text{ do } P \text{ od}] = [b; P]^*; [\neg b] \)

where \(R; S \) is the relational composition of \(R \) and \(S \), and \(R^* \) is the transitive closure of \(R \)...
Transitive closure

Given a binary relation $R \subseteq A \times A$ we define R^n inductively:

1. $R^0 = \Delta$ the diagonal relation
2. $R^{i+1} = R^i \cup R$ for $i \geq 0$.

The **transitive closure**, R^* is then defined to be:

$$R^* := \bigcup_{i=0}^{\infty} R^i$$

$$= \{(x, y) : (x, y) \in R^i \text{ for some } i \in \mathbb{N}\}.$$
Need to know for this course

- Write programs in \mathcal{L}.
- Give proofs using the Hoare logic rules (full and outline)
- Definition of $[\cdot]$
- Definition of composition and transitive closure