5b. Measure & Conquer COMP6741: Parameterized and Exact Computation

Serge Gaspers

School of Computer Science and Engineering, UNSW Sydney, Australia

19T3

Introduction

2 Maximum Independent Set

- Simple Analysis
- Search Trees and Branching Numbers
- Measure & Conquer Analysis
- Optimizing the measure
- Exponential Time Subroutines
- Structures that arise rarely

3 Further Reading

Introduction

Maximum Independent Set

- Simple Analysis
- Search Trees and Branching Numbers
- Measure & Conquer Analysis
- Optimizing the measure
- Exponential Time Subroutines
- Structures that arise rarely

3 Further Reading

- A vertex set S ⊆ V of a graph G = (V, E) is an independent set in G if there is no edge uv ∈ E with u, v ∈ S.
- An independent set is maximal if it is not a subset of any other independent set.
- Examples:

Enumeration problem: Enumerate all maximal independent sets

Maximal independent sets: $\{a, d\}, \{b\}, \{c\}$

Enumeration problem: Enumerate all maximal independent sets

Maximal independent sets: $\{a, d\}, \{b\}, \{c\}$

Note: Let v be a vertex of a graph G. Every maximal independent set contains a vertex from $N_G[v]$.

```
\begin{array}{l} \text{Algorithm enum-mis}(G,I)\\ \text{Input} : A graph $G = (V,E)$, an independent set $I$ of $G$.\\ \textbf{Output:} All maximal independent sets of $G$ that are supersets of $I$.\\ 1 $G' \leftarrow G - N_G[I]$\\ 2 $if $V(G') = \emptyset$ then $//$ G'$ has no vertex $\\ 3 $ \begin{bmatrix} Output $I$ $\\ 0 $utput $I$ $\\ 4 $else$\\ 5 $ $ Select $v \in V(G')$ such that $d_{G'}(v) = \delta(G')//$ $v$ has min degree in $G'$ $\\ 6 $ $ $ $ Run enum-mis(G, $I \cup \{u\}$)$ for each $u \in N_{G'}[v]$ $ $ $v$ $if $V_G'$ $if $v$ $if $V_G'$ $if
```

Running Time Analysis

Let us upper bound by $L(n) = 2^{\alpha n}$ the number of leaves in any search tree of enum-mis for an instance with $|V(G')| \le n$.

We minimize α subject to constraints obtained from the branching:

$$\begin{split} L(n) &\geq (d+1) \cdot L(n-(d+1)) & \quad \text{for each integer } d \geq 0. \\ \Leftrightarrow & 2^{\alpha n} \geq d' \cdot 2^{\alpha \cdot (n-d')} & \quad \text{for each integer } d' \geq 1. \\ \Leftrightarrow & 1 \geq d' \cdot 2^{\alpha \cdot (-d')} & \quad \text{for each integer } d' \geq 1. \end{split}$$

For fixed d', the smallest value for 2^{α} satisfying the constraint is $d'^{1/d'}$. The function $f(x) = x^{1/x}$ has its maximum value for x = e and for integer x the maximum value of f(x) is when x = 3. Therefore, the minimum value for 2^{α} for which all constraints hold is $3^{1/3}$. We can thus set $L(n) = 3^{n/3}$. Since the height of the search trees is $\leq |V(G')|$, we obtain:

Theorem 1

Algorithm enum-mis has running time $O^*(3^{n/3}) \subseteq O(1.4423^n)$, where n = |V|.

Corollary 2

A graph on *n* vertices has $O(3^{n/3})$ maximal independent sets.

Running Time Lower Bound

Theorem 3

There is an infinite family of graphs with $\Omega(3^{n/3})$ maximal independent sets.

Introduction

2 Maximum Independent Set

- Simple Analysis
- Search Trees and Branching Numbers
- Measure & Conquer Analysis
- Optimizing the measure
- Exponential Time Subroutines
- Structures that arise rarely

3 Further Reading

MAXIMUM INDEPENDENT SET

Input: graph G

Output: A largest independent set of G.

Branching Algorithm for MAXIMUM INDEPENDENT SET

Algorithm mis(G)**Input** : A graph G = (V, E). **Output:** The size of a maximum i.s. of G. // G has max degree ≤ 2 1 if $\Delta(G) \leq 2$ then 2 **return** the size of a maximum i.s. of G in polynomial time 3 else if $\exists v \in V : d(v) = 1$ then // v has degree 1 4 return $1 + \min(G - N[v])$ 5 else if G is not connected then **6** Let G_1 be a connected component of G 7 return $mis(G_1) + mis(G - V(G_1))$ 8 else 9 | Select $v \in V$ s.t. $d(v) = \Delta(G)$ // v has max degree o return $\max(1 + \min(G - N[v]), \min(G - v))$

Line 4:

Lemma 4

If $v \in V$ has degree 1, then G has a maximum independent set I with $v \in I$.

Proof.

Let J be a maximum independent set of G.

If $v \in J$ we are done because we can take I = J.

If $v \notin J$, then $u \in J$, where u is the neighbor of v, otherwise J would not be maximum.

Set $I = (J \setminus \{u\}) \cup \{v\}$. We have that I is an independent set, and, since |I| = |J|, I is a maximum independent set containing v.

Introduction

2 Maximum Independent Set

Simple Analysis

- Search Trees and Branching Numbers
- Measure & Conquer Analysis
- Optimizing the measure
- Exponential Time Subroutines
- Structures that arise rarely

3 Further Reading

Lemma 5 (Simple Analysis Lemma)

Let

- A be a branching algorithm
- $\alpha > 0, \ c \ge 0$ be constants

such that on input I, A calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(|I|^c)$, such that

$$(\forall i: 1 \le i \le k) \quad |I_i| \le |I| - 1, \text{ and}$$

$$2^{\alpha \cdot |I_1|} + \dots + 2^{\alpha \cdot |I_k|} \le 2^{\alpha \cdot |I|}.$$
(2)

Then A solves any instance I in time $O(|I|^{c+1}) \cdot 2^{\alpha \cdot |I|}$.

Simple Analysis II

Proof.

By induction on |I|.

W.l.o.g., suppose the hypotheses' O statements hide a constant factor $d \ge 0$, and for the base case assume that the algorithm returns the solution to an empty instance in time $d \le d \cdot |I|^{c+1} 2^{\alpha \cdot |I|}$.

Suppose the lemma holds for all instances of size at most $|I| - 1 \ge 0$, then the running time of algorithm A on instance I is

$$T_{A}(I) \leq d \cdot |I|^{c} + \sum_{i=1}^{k} T_{A}(I_{i})$$
 (by definition)
$$\leq d \cdot |I|^{c} + \sum d \cdot |I_{i}|^{c+1} 2^{\alpha \cdot |I_{i}|}$$
 (by the inductive hypothesis)
$$\leq d \cdot |I|^{c} + d \cdot (|I| - 1)^{c+1} \sum 2^{\alpha \cdot |I_{i}|}$$
 (by (1))
$$\leq d \cdot |I|^{c} + d \cdot (|I| - 1)^{c+1} 2^{\alpha \cdot |I|}$$
 (by (2))
$$\leq d \cdot |I|^{c+1} 2^{\alpha \cdot |I|}.$$

The final inequality uses that $\alpha \cdot |I| > 0$ and holds for any $c \ge 0$.

Simple Analysis for mis

- At each node of the search tree: $O(n^2)$ time
- \bullet *G* disconnected:

If α · s < 1, then s < 1/α, and the algorithm solves G₁ in constant time (provided that α > 0). We can view this rule as a simplification rule, removing G₁ and making one recursive call on G - V(G₁).
 If α · (n - s) < 1: similar as (1).
 Otherwise,

$$(\forall s: 1/\alpha \le s \le n - 1/\alpha) \quad 2^{\alpha \cdot s} + 2^{\alpha \cdot (n-s)} \le 2^{\alpha \cdot n}.$$
(3)

always satisfied since $2^x + 2^y \le 2^{x+y}$ if $x, y \ge 1$.

• Branch on vertex of degree $d \ge 3$

$$(\forall d: 3 \le d \le n-1) \quad 2^{\alpha \cdot (n-1)} + 2^{\alpha \cdot (n-1-d)} \le 2^{\alpha n}.$$
 (4)

Dividing all these terms by $2^{\alpha n}$, the constraints become

$$2^{-\alpha} + 2^{\alpha \cdot (-1-d)} \le 1.$$
 (5)

The minimum α satisfying the constraints is obtained by solving a convex mathematical program minimizing α subject to the constraints (the constraint for d = 3 is sufficient as all other constraints are weaker).

Compute optimum α

The minimum α satisfying the constraints is obtained by solving a convex mathematical program minimizing α subject to the constraints (the constraint for d = 3 is sufficient as all other constraints are weaker).

Alternatively, set $x := 2^{\alpha}$, compute the unique positive real root of each of the characteristic polynomials

 $c_d(x) := x^{-1} + x^{-1-d} - 1,$

and take the maximum of these roots [Kul99].

d	x	α
3	1.3803	0.4650
4	1.3248	0.4057
5	1.2852	0.3620
6	1.2555	0.3282
7	1.2321	0.3011

- use the Simple Analysis Lemma with c=2 and $\alpha=0.464959$
- running time of Algorithm mis upper bounded by $O(n^3) \cdot 2^{0.464959 \cdot n} = O(2^{0.4650 \cdot n})$ or $O(1.3803^n)$

$$T(n) = T(n-5) + T(n-3)$$

- \bullet for this graph, $P_n^2,$ the worst case running time is $1.1938\ldots^n\cdot \mathsf{poly}(n)$
- Run time of algo **mis** is $\Omega(1.1938^n)$

Mystery

What is the worst-case running time of Algorithm mis?

- lower bound $\Omega(1.1938^n)$
- upper bound $O(1.3803^n)$

Introduction

2 Maximum Independent Set

Simple Analysis

• Search Trees and Branching Numbers

- Measure & Conquer Analysis
- Optimizing the measure
- Exponential Time Subroutines
- Structures that arise rarely

3 Further Reading

Search Trees

Denote $\mu(I) := \alpha \cdot |I|$.

Search Trees

Denote $\mu(I) := \alpha \cdot |I|$.

Example: execution of **mis** on a P_n^2

Consider a constraint

$$2^{\mu(I)-a_1} + \dots + 2^{\mu(I)-a_k} \le 2^{\mu(I)}.$$

Its branching number is

 $2^{-a_1} + \dots + 2^{-a_k},$

and is denoted by

 (a_1,\ldots,a_k) .

Clearly, any constraint with branching number at most 1 is satisfied.

Dominance For any a_i, b_i such that $a_i \ge b_i$ for all $i, 1 \le i \le k$,

$$(a_1,\ldots,a_k)\leq (b_1,\ldots,b_k)\,,$$

as $2^{-a_1} + \dots + 2^{-a_k} \le 2^{-b_1} + \dots + 2^{-b_k}$. In particular, for any a, b > 0,

 $\text{either} \quad (a,a) \leq (a,b) \quad \text{ or } \quad (b,b) \leq (a,b) \, .$

Balance If $0 < a \le b$, then for any ε such that $0 \le \varepsilon \le a$,

 $(a,b) \le (a-\varepsilon,b+\varepsilon)$

by convexity of 2^x .

Introduction

2 Maximum Independent Set

- Simple Analysis
- Search Trees and Branching Numbers

• Measure & Conquer Analysis

- Optimizing the measure
- Exponential Time Subroutines
- Structures that arise rarely

3 Further Reading

Goal

• capture more structural changes when branching into subinstances

- How?
 - potential-function method, a.k.a., Measure & Conquer [FGK09]
- Example: Algorithm mis
 - advantage when degrees of vertices decrease

Instead of using the number of vertices, n, to track the progress of ${\rm mis},$ let us use a measure μ of G.

Definition 6

A measure μ for a problem P is a function from the set of all instances for P to the set of non negative reals.

Let us use the following measure for the analysis of \mbox{mis} on graphs of maximum degree at most 5:

$$\mu(G) = \sum_{i=0}^{5} \omega_i n_i,$$

where $n_i := |\{v \in V : d(v) = i\}|.$

Lemma 7 (Measure & Conquer Lemma)

Let

- A be a branching algorithm
- $c \ge 0$ be a constant, and
- $\mu(\cdot), \eta(\cdot)$ be two measures for the instances of A,

such that on input I, A calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(\eta(I)^c)$, such that

$$(\forall i) \quad \eta(I_i) \le \eta(I) - 1, \text{ and}$$
 (6)

$$2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \le 2^{\mu(I)}.$$
(7)

Then A solves any instance I in time $O(\eta(I)^{c+1}) \cdot 2^{\mu(I)}$.

For $\mu(G)=\sum_{i=0}^5\omega_in_i$ to be a valid measure, we constrain that $w_d\geq 0\qquad\qquad \text{for each }d\in\{0,\dots,5\}$

We also constrain that reducing the degree of a vertex does not increase the measure (useful for analysis of the degree-1 simplification rule and the branching rule):

 $-\omega_d + \omega_{d-1} \le 0 \qquad \qquad \text{for each } d \in \{1, \dots, 5\}$

For $\mu(G)=\sum_{i=0}^5\omega_in_i$ to be a valid measure, we constrain that $w_d\geq 0\qquad\qquad \text{for each }d\in\{0,\ldots,5\}$

We also constrain that reducing the degree of a vertex does not increase the measure (useful for analysis of the degree-1 simplification rule and the branching rule):

 $-\omega_d + \omega_{d-1} \le 0 \qquad \qquad \text{for each } d \in \{1, \dots, 5\}$

Lines 1-2 is a halting rule and we merely need that it takes polynomial time so that we can apply Lemma 7.

 $\begin{array}{ll} \mbox{if } \Delta(G) \leq 2 \mbox{ then } & // \ G \mbox{ has max degree } \leq 2 \\ \mbox{ | return the size of a maximum i.s. of } G \mbox{ in polynomial time } \end{array}$

Analysis of mis for degree at most 5 (II)

```
Lines 3-4 of mis need to satisfy (7).
else if \exists v \in V : d(v) = 1 then
\lfloor \text{ return } 1 + \min(G - N[v])
```

// v has degree 1

The simplification rule removes v and its neighbor u. We get a constraint for each possible degree of u:

$$\begin{array}{ll} 2^{\mu(G)-\omega_1-\omega_d} \leq 2^{\mu(G)} & \text{for each } d \in \{1,\ldots,5\} \\ \Leftrightarrow & 2^{-\omega_1-\omega_d} \leq 2^0 & \text{for each } d \in \{1,\ldots,5\} \\ \Leftrightarrow & -\omega_1-\omega_d \leq 0 & \text{for each } d \in \{1,\ldots,5\} \end{array}$$

These constraints are always satisfied since $\omega_d \ge 0$ for each $d \in \{0, \ldots, 5\}$. **Note:** the degrees of u's other neighbors (if any) decrease, but this degree change does not increase the measure.

Analysis of mis for degree at most 5 (III)

For lines 5–7 of **mis** we consider two cases. **else if** G is not connected **then** Let G_1 be a connected component of G**return mis** $(G_1) + mis(G - V(G_1))$

If $\mu(G_1) < 1$ (or $\mu(G - V(G_1)) < 1$, which is handled similarly), then we view this rule as a simplification rule, which takes polynomial time to compute $mis(G_1)$, and then makes a recursive call $mis(G - V(G_1))$. To ensure that instances with measure < 1 can be solved in polynomial time, we constrain that

$$w_d > 0$$
 for each $d \in \{3, 4, 5\}$

and this will be implied by other constraints. Otherwise, $\mu(G_1) \ge 1$ and $\mu(G - V(G_1)) \ge 1$, and we need to satisfy (7). Since $\mu(G) = \mu(G_1) + \mu(G - V(G_1))$, the constraints

$$2^{\mu(G_1)} + 2^{\mu(G-V(G_1))} < 2^{\mu(G)}$$

are always satisfied since the slope of the function 2^x is at least 1 when $x \ge 1$. (I.e., we get no new constraints on $\omega_1, \ldots, \omega_5$.)
Analysis of mis for degree at most 5 (IV)

Lines 8-10 of mis need to satisfy (7).

else

```
Select v \in V s.t. d(v) = \Delta(G) // v has max degree return max (1 + \min(G - N[v]), \min(G - v))
```

We know that in G - N[v], some vertex of $N^2[v]$ has its degree decreased (unless G has at most 6 vertices, which can be solved in constant time). Define

$$(\forall d: 2 \le d \le 5) \quad h_d := \min_{2 \le i \le d} \{w_i - w_{i-1}\}$$

We obtain the following constraints:

$$2^{\mu(G)-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{\mu(G)-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} \le 2^{\mu(G)}$$

$$\Leftrightarrow \qquad 2^{-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} \le 1$$

for all $d, 3 \le d \le 5$ (degree of v), and all $p_i, 2 \le i \le d$, such that $\sum_{i=2}^{d} p_i = d$ (number of neighbors of degree i).

Applying the lemma

Our constraints

 $w_d \ge 0$ - $\omega_d + \omega_{d-1} \le 0$ $2^{-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} \le 1$

are satisfied by the following values:

Applying the lemma

Our constraints

$$w_d \ge 0$$

- $\omega_d + \omega_{d-1} \le 0$
 $2^{-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} \le 1$

are satisfied by the following values:

i	w_i	h_i
1	0	0
2	0.25	0.25
3	0.35	0.10
4	0.38	0.03
5	0.40	0.02

These values for w_i satisfy all the constraints and $\mu(G) \leq 2n/5$ for any graph of max degree ≤ 5 . Taking c = 2 and $\eta(G) = n$, the Measure & Conquer Lemma shows that **mis** has run time $O(n^3)2^{2n/5} = O(1.3196^n)$ on graphs of max degree ≤ 5 .

2 Maximum Independent Set

- Simple Analysis
- Search Trees and Branching Numbers
- Measure & Conquer Analysis

• Optimizing the measure

- Exponential Time Subroutines
- Structures that arise rarely

• By convex programming [GaspersS09]

All constraints are already convex, except conditions for h_d

Use existing convex programming solvers to find optimum weights.

Convex program in AMPL

```
param maxd integer = 5;
set DEGREES := 0..maxd:
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0; # weight for degree reductions from deg <= i</pre>
var Wmax;
                       # maximum weight of W[d]
minimize Obj: Wmax;  # minimize the maximum weight
subject to MaxWeight {d in DEGREES}:
 Wmax \ge W[d]:
subject to gNotation {d in DEGREES : 2 <= d}:
 g[d] \le W[d] - W[d-1];
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
 h[d] \leq W[i] - W[i-1]:
subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
  2^{-}(-W[3] - p2*g[2] - p3*g[3]) + 2^{-}(-W[3] - p2*W[2] - p3*W[3] - h[3]) <=1;
subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
 2^{-W[4]} - p2*g[2] - p3*g[3] - p4*g[4])
+ 2^{(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4])} <=1;
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :
                 p2+p3+p4+p5=5}:
 2^{(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5])}
+ 2^{(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;
```


- use the Measure & Conquer Lemma with $\mu(G)=\sum_{i=1}^5 w_in_i\leq 0.358044\cdot n$, c=2, and $\eta(G)=n$
- mis has running time $O(n^3)2^{0.358044 \cdot n} = O(1.2817^n)$

2 Maximum Independent Set

- Simple Analysis
- Search Trees and Branching Numbers
- Measure & Conquer Analysis
- Optimizing the measure

• Exponential Time Subroutines

• Structures that arise rarely

Lemma 8 (Combine Analysis Lemma)

Let

- A be a branching algorithm and B be an algorithm,
- $c \ge 0$ be a constant, and
- $\mu(\cdot), \mu'(\cdot), \eta(\cdot)$ be three measures for the instances of A and B,

such that $\mu'(I) \leq \mu(I)$ for all instances I, and on input I, A either solves I by invoking B with running time $O(\eta(I)^{c+1}) \cdot 2^{\mu'(I)}$, or calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(\eta(I)^c)$, such that

$$(\forall i) \quad \eta(I_i) \le \eta(I) - 1, \text{ and}$$

$$(8)$$

$$2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \le 2^{\mu(I)}.$$

$$(9)$$

Then A solves any instance I in time $O(\eta(I)^{c+1}) \cdot 2^{\mu(I)}$.

- use the Combine Analysis Lemma with A = B = mis, c = 2, $\mu(G) = 0.35805n$, $\mu'(G) = \sum_{i=1}^{5} w_i n_i$, and $\eta(G) = n$
- for every instance G, $\mu'(G) \leq \mu(G)$ because $\forall i, w_i \leq 0.35805$
- for each $d \ge 6$,

 $(0.35805, (d+1) \cdot 0.35805) \le 1$

 $\bullet\,$ Thus, Algorithm mis has running time $O(1.2817^n)$ for graphs of arbitrary degrees

2 Maximum Independent Set

- Simple Analysis
- Search Trees and Branching Numbers
- Measure & Conquer Analysis
- Optimizing the measure
- Exponential Time Subroutines
- Structures that arise rarely

- Branching on a local configuration *C* does not influence overall running time if *C* is selected only a constant number of times on the path from the root to a leaf of any search tree corresponding to the execution of the algorithm
- Can be proved formally by using measure

 $\mu'(I) := \begin{cases} \mu(I) + c & \text{ if } C \text{ may be selected in the current subtree} \\ \mu(I) & \text{ otherwise.} \end{cases}$

else Select $v \in V$ such that (1) v has maximum degree, and (2) among all vertices satisfying (1), v has a neighbor of minimum degree return max (1 + mis(G - N[v]), mis(G - v))

New measure:

$$\mu'(G) = \mu(G) + \sum_{d=3}^{5} [G \text{ has a } d\text{-regular subgraph}] \cdot C_d$$

where $C_d, 3 \le d \le 5$, are constants. The Iverson bracket $[F] = \begin{cases} 1 \text{ if } F \text{ true} \\ 0 \text{ otherwise} \end{cases}$ For each $d, 3 \le d \le 5$ and all $p_i, 2 \le i \le d$ such that $\sum_{i=2}^d p_i = d$ and $p_d \ne d$,

$$\left(w_d + \sum_{i=2}^d p_i \cdot (w_i - w_{i-1}), w_d + \sum_{i=2}^d p_i \cdot w_i + h_d\right).$$

All these branching numbers are at most $1 \ {\rm with} \ {\rm the} \ {\rm optimal} \ {\rm set} \ {\rm of} \ {\rm weights} \ {\rm on} \ {\rm the} \ {\rm next} \ {\rm slide}$

Thus, the modified Algorithm **mis** has running time $O(2^{0.3480 \cdot n}) = O(1.2728^n)$. Current fastest algorithm for MIS: $O(1.1996^n)$ [XN17]

Maximum Independent Set

- Simple Analysis
- Search Trees and Branching Numbers
- Measure & Conquer Analysis
- Optimizing the measure
- Exponential Time Subroutines
- Structures that arise rarely

- Chapter 2, Branching in [FK10]
- Chapter 6, Measure & Conquer in [FK10]
- Chapter 2, Branching Algorithms in [Gas10]

References I

- ▶ [FGK09] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. "A measure & conquer approach for the analysis of exact algorithms". In: *Journal of the ACM* 56.5 (2009), 25:1–25:32.
- ► [FK10] Fedor V. Fomin and Dieter Kratsch. *Exact Exponential Algorithms*. Springer, 2010.
- ► [Gas10] Serge Gaspers. Exponential Time Algorithms: Structures, Measures, and Bounds. VDM Verlag Dr. Mueller, 2010.
- [Kul99] Oliver Kullmann. "New Methods for 3-SAT Decision and Worst-case Analysis". In: *Theoretical Computer Science* 223.1-2 (1999), pp. 1–72.
- [XN17] Mingyu Xiao and Hiroshi Nagamochi. "Exact algorithms for maximum independent set". In: Information and Computation 255 (2017), pp. 126–146.