5b. Measure & Conquer

COMP6741: Parameterized and Exact Computation

Serge Gaspers

School of Computer Science and Engineering, UNSW Sydney, Australia

19T3

Outline

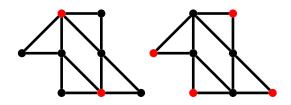
- Introduction
- Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure & Conquer Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely
- Further Reading

Outline

- Introduction
- - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure & Conquer Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely

Recall: Maximal Independent Sets

- A vertex set $S \subseteq V$ of a graph G = (V, E) is an independent set in G if there is no edge $uv \in E$ with $u, v \in S$.
- An independent set is maximal if it is not a subset of any other independent set.
- Examples:



Enumeration problem: Enumerate all maximal independent sets

ENUM-MIS

Input: graph G

Output: all maximal independent sets of G

Maximal independent sets: $\{a,d\},\{b\},\{c\}$

Enumeration problem: Enumerate all maximal independent sets

ENUM-MIS

Input: graph G

Output: all maximal independent sets of G

Maximal independent sets: $\{a, d\}, \{b\}, \{c\}$

Note: Let v be a vertex of a graph G. Every maximal independent set contains a vertex from $N_G[v]$.

```
Algorithm enum-mis(G,I)
Input : A graph G=(V,E), an independent set I of G.
Output: All maximal independent sets of G that are supersets of I.

1 G'\leftarrow G-N_G[I]
2 if V(G')=\emptyset then // G' has no vertex 3 \bigcup Output I
4 else
5 \bigcup Select v\in V(G') such that d_{G'}(v)=\delta(G')//v has min degree in G'
Run enum-mis(G,I\cup\{u\}) for each u\in N_{G'}[v]
```

Running Time Analysis

Let us upper bound by $L(n) = 2^{\alpha n}$ the number of leaves in any search tree of **enum-mis** for an instance with $|V(G')| \le n$.

We minimize α subject to constraints obtained from the branching:

$$L(n) \geq (d+1) \cdot L(n-(d+1)) \qquad \text{ for each integer } d \geq 0.$$

$$\Leftrightarrow \qquad 2^{\alpha n} \geq d' \cdot 2^{\alpha \cdot (n-d')} \qquad \text{ for each integer } d' \geq 1.$$

$$\Leftrightarrow \qquad 1 \geq d' \cdot 2^{\alpha \cdot (-d')} \qquad \text{ for each integer } d' \geq 1.$$

For fixed d', the smallest value for 2^{α} satisfying the constraint is $d'^{1/d'}$. The function $f(x)=x^{1/x}$ has its maximum value for x=e and for integer x the maximum value of f(x) is when x=3.

Therefore, the minimum value for 2^{α} for which all constraints hold is $3^{1/3}$. We can thus set $L(n) = 3^{n/3}$.

Running Time Analysis II

Since the height of the search trees is $\leq |V(G')|$, we obtain:

Theorem 1

Algorithm enum-mis has running time $O^*(3^{n/3}) \subseteq O(1.4423^n)$, where n = |V|.

Corollary 2

A graph on n vertices has $O(3^{n/3})$ maximal independent sets.

Running Time Lower Bound

Theorem 3

There is an infinite family of graphs with $\Omega(3^{n/3})$ maximal independent sets.

Outline

- Introduction
- Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure & Conquer Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely
- Further Reading

19T3

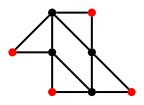
10 / 49

MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET

Input: graph G

Output: A largest independent set of G.



```
Algorithm mis(G)
 Input : A graph G = (V, E).
 Output: The size of a maximum i.s. of G.
                                               // G has max degree \leq 2
1 if \Delta(G) \leq 2 then
return the size of a maximum i.s. of G in polynomial time
3 else if \exists v \in V : d(v) = 1 then
                                                      //v has degree 1
4 return 1 + mis(G - N[v])
5 else if G is not connected then
6 Let G_1 be a connected component of G
7 return mis(G_1) + mis(G - V(G_1))
8 else
9 | Select v \in V s.t. d(v) = \Delta(G) // v has max degree
return \max(1 + \min(G - N[v]), \min(G - v))
```

Correctness

Line 4:

Lemma 4

If $v \in V$ has degree 1, then G has a maximum independent set I with $v \in I$.

Proof.

Let J be a maximum independent set of G.

If $v \in J$ we are done because we can take I = J.

If $v \notin J$, then $u \in J$, where u is the neighbor of v, otherwise J would not be maximum.

Set $I=(J\setminus\{u\})\cup\{v\}$. We have that I is an independent set, and, since |I|=|J|, I is a maximum independent set containing v.

S. Gaspers (UNSW) Measure & Conquer

13 / 49

19T3

Outline

- Introduction
- 2 Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure & Conquer Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely
- Further Reading

Lemma 5 (Simple Analysis Lemma)

Let

- A be a branching algorithm
- $\alpha > 0, \ c \geq 0$ be constants

such that on input I, A calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(|I|^c)$, such that

$$(\forall i: 1 \le i \le k) \quad |I_i| \le |I| - 1, \text{ and}$$
 (1)

$$2^{\alpha \cdot |I_1|} + \dots + 2^{\alpha \cdot |I_k|} \le 2^{\alpha \cdot |I|}.$$
 (2)

Then A solves any instance I in time $O(|I|^{c+1}) \cdot 2^{\alpha \cdot |I|}$.

Simple Analysis II

Proof.

By induction on |I|.

W.l.o.g., suppose the hypotheses' O statements hide a constant factor $d \geq 0$, and for the base case assume that the algorithm returns the solution to an empty instance in time $d \leq d \cdot |I|^{c+1} 2^{\alpha \cdot |I|}$.

Suppose the lemma holds for all instances of size at most $|I|-1\geq 0$, then the running time of algorithm A on instance I is

$$\begin{split} T_A(I) & \leq d \cdot |I|^c + \sum_{i=1}^k T_A(I_i) & \text{(by definition)} \\ & \leq d \cdot |I|^c + \sum_{i=1}^k d \cdot |I_i|^{c+1} 2^{\alpha \cdot |I_i|} & \text{(by the inductive hypothesis)} \\ & \leq d \cdot |I|^c + d \cdot (|I| - 1)^{c+1} \sum_{i=1}^k 2^{\alpha \cdot |I_i|} & \text{(by (1))} \\ & \leq d \cdot |I|^c + d \cdot (|I| - 1)^{c+1} 2^{\alpha \cdot |I|} & \text{(by (2))} \\ & \leq d \cdot |I|^{c+1} 2^{\alpha \cdot |I|}. \end{split}$$

The final inequality uses that $\alpha \cdot |I| > 0$ and holds for any $c \ge 0$.

Simple Analysis for mis

- At each node of the search tree: $O(n^2)$ time
- G disconnected:
 - (1) If $\alpha \cdot s < 1$, then $s < 1/\alpha$, and the algorithm solves G_1 in constant time (provided that $\alpha > 0$). We can view this rule as a simplification rule, removing G_1 and making one recursive call on $G V(G_1)$.
 - (2) If $\alpha \cdot (n-s) < 1$: similar as (1).
 - (3) Otherwise,

$$(\forall s: 1/\alpha \le s \le n - 1/\alpha) \quad 2^{\alpha \cdot s} + 2^{\alpha \cdot (n-s)} \le 2^{\alpha \cdot n}. \tag{3}$$

always satisfied since $2^x + 2^y \le 2^{x+y}$ if $x, y \ge 1$.

• Branch on vertex of degree $d \geq 3$

$$(\forall d: 3 \le d \le n-1) \quad 2^{\alpha \cdot (n-1)} + 2^{\alpha \cdot (n-1-d)} \le 2^{\alpha n}.$$
 (4)

Dividing all these terms by $2^{\alpha n}$, the constraints become

$$2^{-\alpha} + 2^{\alpha \cdot (-1-d)} \le 1. \tag{5}$$

Compute optimum a

The minimum α satisfying the constraints is obtained by solving a convex mathematical program minimizing α subject to the constraints (the constraint for d=3 is sufficient as all other constraints are weaker).

Compute optimum a

The minimum α satisfying the constraints is obtained by solving a convex mathematical program minimizing α subject to the constraints (the constraint for d=3 is sufficient as all other constraints are weaker).

Alternatively, set $x:=2^{\alpha}$, compute the unique positive real root of each of the characteristic polynomials

$$c_d(x) := x^{-1} + x^{-1-d} - 1,$$

and take the maximum of these roots [Kul99].

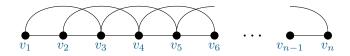
d.		0.
a	x	α
3	1.3803	0.4650
4	1.3248	0.4057
5	1.2852	0.3620
6	1.2555	0.3282
7	1.2321	0.3011

18 / 49

Simple Analysis: Result

- ullet use the Simple Analysis Lemma with c=2 and lpha=0.464959
- running time of Algorithm **mis** upper bounded by $O(n^3) \cdot 2^{0.464959 \cdot n} = O(2^{0.4650 \cdot n})$ or $O(1.3803^n)$

Lower bound



$$T(n) = T(n-5) + T(n-3)$$

- \bullet for this graph, P_n^2 , the worst case running time is $1.1938\dots^n\cdot\operatorname{poly}(n)$
- \bullet Run time of algo \mathbf{mis} is $\Omega(1.1938^n)$

Worst-case running time — a mystery

Mystery

What is the worst-case running time of Algorithm mis?

- lower bound $\Omega(1.1938^n)$
- upper bound $O(1.3803^n)$

Outline

- Introduction
- Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure & Conquer Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely
- Further Reading

22 / 49

Search Trees

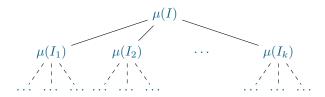
Denote $\mu(I) := \alpha \cdot |I|$.



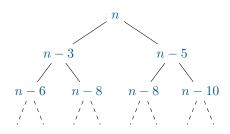
19T3

Search Trees

Denote $\mu(I) := \alpha \cdot |I|$.



Example: execution of **mis** on a P_n^2



Branching number: Definition

Consider a constraint

$$2^{\mu(I)-a_1} + \dots + 2^{\mu(I)-a_k} \le 2^{\mu(I)}$$
.

Its branching number is

$$2^{-a_1} + \dots + 2^{-a_k},$$

and is denoted by

$$(a_1,\ldots,a_k)$$
.

Clearly, any constraint with branching number at most 1 is satisfied.

Branching numbers: Properties

Dominance For any a_i, b_i such that $a_i \geq b_i$ for all $i, 1 \leq i \leq k$,

$$(a_1,\ldots,a_k)\leq (b_1,\ldots,b_k)\,,$$

as $2^{-a_1} + \dots + 2^{-a_k} \le 2^{-b_1} + \dots + 2^{-b_k}$. In particular, for any a, b > 0,

either
$$(a,a) \le (a,b)$$
 or $(b,b) \le (a,b)$.

Balance If $0 < a \le b$, then for any ε such that $0 \le \varepsilon \le a$,

$$(a,b) \le (a-\varepsilon,b+\varepsilon)$$

by convexity of 2^x .

Outline

- Introduction
- Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure & Conquer Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely
- Further Reading

Measure & Conquer analysis

- Goal
 - capture more structural changes when branching into subinstances
- How?
 - potential-function method, a.k.a., Measure & Conquer [FGK09]
- Example: Algorithm mis
 - advantage when degrees of vertices decrease

Instead of using the number of vertices, n, to track the progress of ${\bf mis}$, let us use a measure μ of G.

Definition 6

A measure μ for a problem P is a function from the set of all instances for P to the set of non negative reals.

Let us use the following measure for the analysis of **mis** on graphs of maximum degree at most 5:

$$\mu(G) = \sum_{i=0}^{5} \omega_i n_i,$$

19T3

28 / 49

where $n_i := |\{v \in V : d(v) = i\}|.$

Measure & Conquer Analysis

Lemma 7 (Measure & Conquer Lemma)

Let

- A be a branching algorithm
- $c \ge 0$ be a constant, and
- ullet $\mu(\cdot),\eta(\cdot)$ be two measures for the instances of A,

such that on input I, A calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(\eta(I)^c)$, such that

$$(\forall i) \quad \eta(I_i) \le \eta(I) - 1, \text{ and}$$
 (6)

$$2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \le 2^{\mu(I)}.$$
(7)

Then A solves any instance I in time $O(\eta(I)^{c+1}) \cdot 2^{\mu(I)}$.

Analysis of mis for degree at most 5

For
$$\mu(G) = \sum_{i=0}^5 \omega_i n_i$$
 to be a valid measure, we constrain that

$$w_d \geq 0 \qquad \qquad \text{for each } d \in \{0,\dots,5\}$$

We also constrain that reducing the degree of a vertex does not increase the measure (useful for analysis of the degree-1 simplification rule and the branching rule):

$$-\omega_d + \omega_{d-1} \le 0 \qquad \qquad \text{for each } d \in \{1, \dots, 5\}$$

Analysis of mis for degree at most 5

For
$$\mu(G) = \sum_{i=0}^5 \omega_i n_i$$
 to be a valid measure, we constrain that

$$w_d \ge 0$$
 for each $d \in \{0, \dots, 5\}$

We also constrain that reducing the degree of a vertex does not increase the measure (useful for analysis of the degree-1 simplification rule and the branching rule):

$$-\omega_d + \omega_{d-1} \le 0 \qquad \qquad \text{for each } d \in \{1, \dots, 5\}$$

Lines 1-2 is a halting rule and we merely need that it takes polynomial time so that we can apply Lemma 7.

$$\begin{tabular}{ll} \begin{tabular}{ll} \be$$

Analysis of mis for degree at most 5 (II)

The simplification rule removes \boldsymbol{v} and its neighbor $\boldsymbol{u}.$

We get a constraint for each possible degree of u:

$$2^{\mu(G)-\omega_1-\omega_d} \leq 2^{\mu(G)} \qquad \qquad \text{for each } d \in \{1,\dots,5\}$$

$$\Leftrightarrow \qquad \qquad 2^{-\omega_1-\omega_d} \leq 2^0 \qquad \qquad \text{for each } d \in \{1,\dots,5\}$$

$$\Leftrightarrow \qquad \qquad -\omega_1-\omega_d \leq 0 \qquad \qquad \text{for each } d \in \{1,\dots,5\}$$

These constraints are always satisfied since $\omega_d \geq 0$ for each $d \in \{0, \dots, 5\}$. **Note:** the degrees of u's other neighbors (if any) decrease, but this degree change

does not increase the measure.

Analysis of mis for degree at most 5 (III)

For lines 5–7 of **mis** we consider two cases.

else if *G* is not connected **then**

Let G_1 be a connected component of Greturn $mis(G_1) + mis(G - V(G_1))$

If $\mu(G_1)<1$ (or $\mu(G-V(G_1))<1$, which is handled similarly), then we view this rule as a simplification rule, which takes polynomial time to compute $\mathbf{mis}(G_1)$, and then makes a recursive call $\mathbf{mis}(G-V(G_1))$. To ensure that instances with measure <1 can be solved in polynomial time, we constrain that

$$w_d > 0$$
 for each $d \in \{3, 4, 5\}$

and this will be implied by other constraints.

Otherwise, $\mu(G_1) \geq 1$ and $\mu(G - V(G_1)) \geq 1$, and we need to satisfy (7). Since $\mu(G) = \mu(G_1) + \mu(G - V(G_1))$, the constraints

$$2^{\mu(G_1)} + 2^{\mu(G-V(G_1))} \le 2^{\mu(G)}$$

are always satisfied since the slope of the function 2^x is at least 1 when $x \geq 1$. (I.e., we get no new constraints on ω_1,\ldots,ω_5 .)

Analysis of mis for degree at most 5 (IV)

Lines 8–10 of **mis** need to satisfy (7).

else

Select
$$v \in V$$
 s.t. $d(v) = \Delta(G)$ // v has max degree return $\max{(1 + \min(G - N[v]), \min(G - v))}$

We know that in G-N[v], some vertex of $N^2[v]$ has its degree decreased (unless G has at most 6 vertices, which can be solved in constant time). Define

$$(\forall d: 2 \le d \le 5)$$
 $h_d := \min_{2 \le i \le d} \{w_i - w_{i-1}\}$

We obtain the following constraints:

$$2^{\mu(G)-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{\mu(G)-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} \le 2^{\mu(G)}$$

$$\Leftrightarrow \qquad 2^{-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} \le 1$$

for all $d, 3 \le d \le 5$ (degree of v), and all $p_i, 2 \le i \le d$, such that $\sum_{i=2}^d p_i = d$ (number of neighbors of degree i).

Applying the lemma

Our constraints

$$\begin{aligned} w_d &\geq 0 \\ -\omega_d + \omega_{d-1} &\leq 0 \\ 2^{-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} &\leq 1 \end{aligned}$$

are satisfied by the following values:

Applying the lemma

Our constraints

$$\begin{aligned} w_d &\geq 0 \\ -\omega_d + \omega_{d-1} &\leq 0 \\ 2^{-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} &\leq 1 \end{aligned}$$

are satisfied by the following values:

i	w_i	h_i
1	0	0
2	0.25	0.25
3	0.35	0.10
4	0.38	0.03
5	0.40	0.02

These values for w_i satisfy all the constraints and $\mu(G) \leq 2n/5$ for any graph of max degree ≤ 5 .

Taking c=2 and $\eta(G)=n$, the Measure & Conquer Lemma shows that **mis** has run time $O(n^3)2^{2n/5}=O(1.3196^n)$ on graphs of max degree ≤ 5 .

- Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure & Conquer Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely

Compute optimal weights

• By convex programming [GaspersS09]

All constraints are already convex, except conditions for h_d

$$(\forall d: 2 \leq d \leq 5) \quad h_d := \min_{2 \leq i \leq d} \{w_i - w_{i-1}\}$$

$$\downarrow \downarrow$$

$$(\forall i, d: 2 \leq i \leq d \leq 5) \quad h_d \leq w_i - w_{i-1}.$$

Use existing convex programming solvers to find optimum weights.

```
param maxd integer = 5;
set DEGREES := 0..maxd:
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0; # weight for degree reductions from deg <= i
var Wmax;
                                                                   # maximum weight of W[d]
minimize Obj: Wmax; # minimize the maximum weight
subject to MaxWeight {d in DEGREES}:
     Wmax >= W[d]:
subject to gNotation {d in DEGREES : 2 <= d}:
     g[d] \le W[d] - W[d-1];
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
     h[d] \le W[i] - W[i-1]:
subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
      2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2^{-4} = 2
subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
     2^{-}(-W[4] - p2*g[2] - p3*g[3] - p4*g[4])
+ 2^{-}(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :
                                                  p2+p3+p4+p5=5:
     2^{-(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5])}
+ 2^{-}(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;
```

Optimal weights

i	w_i	h_i
1	0	0
2	0.206018	0.206018
3	0.324109	0.118091
4	0.356007	0.031898
5	0.358044	0.002037

- use the Measure & Conquer Lemma with $\mu(G) = \sum_{i=1}^5 w_i n_i \le 0.358044 \cdot n$, c=2, and $\eta(G)=n$
- **mis** has running time $O(n^3)2^{0.358044 \cdot n} = O(1.2817^n)$

- Introduction
- Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure & Conquer Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely
- Further Reading

Exponential time subroutines

Lemma 8 (Combine Analysis Lemma)

Let

- ullet A be a branching algorithm and B be an algorithm,
- $c \ge 0$ be a constant, and
- $\mu(\cdot), \mu'(\cdot), \eta(\cdot)$ be three measures for the instances of A and B,

such that $\mu'(I) \leq \mu(I)$ for all instances I, and on input I, A either solves I by invoking B with running time $O(\eta(I)^{c+1}) \cdot 2^{\mu'(I)}$, or calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(\eta(I)^c)$, such that

$$(\forall i) \quad \eta(I_i) \le \eta(I) - 1, \text{ and}$$
 (8)

$$2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \le 2^{\mu(I)}.$$
(9)

Then A solves any instance I in time $O(\eta(I)^{c+1}) \cdot 2^{\mu(I)}$.

Algorithm **mis** on general graphs

- use the Combine Analysis Lemma with A=B= mis, c=2, $\mu(G)=0.35805n$, $\mu'(G)=\sum_{i=1}^5 w_i n_i$, and $\eta(G)=n$
- for every instance G, $\mu'(G) \leq \mu(G)$ because $\forall i, w_i \leq 0.35805$
- for each $d \geq 6$,

$$(0.35805, (d+1) \cdot 0.35805) \le 1$$

• Thus, Algorithm ${\bf mis}$ has running time $O(1.2817^n)$ for graphs of arbitrary degrees

- Introduction
- Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure & Conquer Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely
- 3 Further Reading

Rare Configurations

- Branching on a local configuration C does not influence overall running time
 if C is selected only a constant number of times on the path from the root to
 a leaf of any search tree corresponding to the execution of the algorithm
- Can be proved formally by using measure

$$\mu'(I) := \begin{cases} \mu(I) + c & \text{if } C \text{ may be selected in the current subtree} \\ \mu(I) & \text{otherwise}. \end{cases}$$

Avoid branching on regular instances in **mis**

else

Select $v \in V$ such that

- (1) v has maximum degree, and
- (2) among all vertices satisfying (1), v has a neighbor of minimum degree

return
$$\max(1 + \min(G - N[v]), \min(G - v))$$

New measure:

$$\mu'(G) = \mu(G) + \sum_{d=3}^5 [G \text{ has a d-regular subgraph}] \cdot C_d$$

where
$$C_d, 3 \leq d \leq 5$$
, are constants. The Iverson bracket $[F] = \begin{cases} 1 \text{ if } F \text{ true} \\ 0 \text{ otherwise} \end{cases}$

Resulting Branching numbers

For each $d, 3 \leq d \leq 5$ and all $p_i, 2 \leq i \leq d$ such that $\sum_{i=2}^d p_i = d$ and $p_d \neq d$,

$$\left(w_d + \sum_{i=2}^d p_i \cdot (w_i - w_{i-1}), w_d + \sum_{i=2}^d p_i \cdot w_i + h_d\right).$$

All these branching numbers are at most 1 with the optimal set of weights on the next slide

S. Gaspers (UNSW) Measure & Conquer 19T3 45 / 49

i	w_i	h_i
1	0	0
2	0.207137	0.207137
3	0.322203	0.115066
4	0.343587	0.021384
5	0.347974	0.004387

Thus, the modified Algorithm \mathbf{mis} has running time $O(2^{0.3480 \cdot n}) = O(1.2728^n).$

Current fastest algorithm for MIS: $O(1.1996^n)~[{\rm XN17}]$

- - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure & Conquer Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely
- Further Reading

Further Reading

- Chapter 2, Branching in [FK10]
- Chapter 6, Measure & Conquer in [FK10]
- Chapter 2, Branching Algorithms in [Gas10]

References I

- ► [FGK09] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. "A measure & conquer approach for the analysis of exact algorithms". In: *Journal of the ACM* 56.5 (2009), 25:1–25:32.
- ► [FK10] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
- ► [Gas10] Serge Gaspers. Exponential Time Algorithms: Structures, Measures, and Bounds. VDM Verlag Dr. Mueller, 2010.
- ► [Kul99] Oliver Kullmann. "New Methods for 3-SAT Decision and Worst-case Analysis". In: *Theoretical Computer Science* 223.1-2 (1999), pp. 1–72.
- ▶ [XN17] Mingyu Xiao and Hiroshi Nagamochi. "Exact algorithms for maximum independent set". In: *Information and Computation* 255 (2017), pp. 126–146.