COMP4418: Knowledge Representation and Reasoning

Propositional Logic: Automating Reasoning

Maurice Pagnucco School of Computer Science and Engineering University of New South Wales NSW 2052, AUSTRALIA morri@cse.unsw.edu.au

Propositional Logic

- Thus far we have considered propositional logic as a knowledge representation language
- We can now write sentences in this language (syntax)
- We can also determine the truth or falsity of these sentences (semantics)
- What remains is to reason; to draw new conclusions from what we know (proof theory) and to do so using a computer to automate the process
- References:
 - Ivan Bratko, Prolog Programming for Artificial Intelligence, Addison-Wesley, 2001. (Chapter 15)
 - Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall International, 1995. (Chapter 6)

Overview

Normal Forms

Resolution

- Refutation Systems
- Correctness of resolution rule soundness and completeness revisited

Conclusion

Motivation

If either George or Herbert wins, then both Jack and Kenneth lose George wins

Therefore, Jack loses

$$\begin{array}{c} (G \lor H) \to (\neg J \land \neg K) \\ \hline G \\ \neg J \end{array}$$

Normal Forms

A normal form is a "standardised" version of a formula

Common normal forms:

Negation Normal Form — negation symbols occur in front of propositional letters only (e.g., $(P \lor \neg Q) \rightarrow (P \land (\neg R \lor S))$

(A literal is a propositional letter or the negation of a propositional letter.)

Conjunctive Normal Form (CNF) — a conjunct of disjunctions (e.g., $(P \lor Q \lor \neg R) \land (\neg S \lor \neg R)$)

Disjunctions of literals are known as clauses

Disjunctive Normal Form (DNF) — a disjunct of conjunctions (e.g., $(P \land Q \land \neg R) \lor (\neg S \land \neg R)$)

Negation Normal Form

- To simplify matters, let us suppose we are only dealing with formulae containing the connectives \neg , \land , \lor
- A (sub)formula $\phi \rightarrow \psi$ is equivalent to $\neg \phi \lor \psi$
- A (sub) formula $\phi \leftrightarrow \psi$ is equivalent to $\phi \rightarrow \psi$ and $\psi \rightarrow \phi$
- DeMorgan's laws:
 - $\blacktriangleright \neg (\phi \land \psi) \equiv \neg \phi \lor \neg \psi$
 - $\blacktriangleright \neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$
- Double Negation: $\neg \neg P \equiv P$
- To put a formula in negation normal form, repeatedly apply De Morgan's laws and double negation
- For example, $\neg (P \lor (\neg R \land P)) \equiv \neg P \land \neg (\neg R \land P) \equiv \neg P \land (R \lor \neg P)$

Conjunctive Normal Form

Note the following distributive identities:

To put a formula in conjunctive normal form (CNF) firstly put the formula into negation normal form and then repeatedly apply the identities above

For example, $R \to (P \land Q) \equiv (\neg R \lor P) \land (\neg R \lor Q)$

Resolution Rule

Resolution Rule:

Resolution Rule

- Resolution is essentially equivalent to the transitivity of material implication
- In fact, it is a form of the well known cut rule in logic

Applying Resolution

- The resolution rule is sound
- What does that mean?
- How can we use the resolution rule?
 - Convert premises into CNF
 - Repeatedly apply resolution rule to the resultant clauses
 - ► Each clause produced can be inferred from the original premises
 - If you have a query sentence goal, it follows from the premises if and only if each of the clauses in CNF(goal) is produced by resolution
- There is a better way

Refutation Systems

- If we would like to prove a sentence ϕ is a theorem (i.e., $\vdash \phi$), we start with $\neg \phi$ and produce a contradiction
- A "proof by contradiction"
- Similarly, if we wish to prove $\psi_1, \ldots, \psi_n \vdash \phi$, start with $\neg \phi$ and together with ψ_1, \ldots, ψ_n produce a contradiction
- Resolution can be used to implement a refutation system
- Repeatedly apply resolution rule until empty clause results

Applying Resolution

- Negate conclusion (resolution is a refutation system)
- Convert premises and negated conclusion into CNF (clausal form)
- Repeatedly apply Resolution Rule, Double Negation
- If empty clause results you have a contradiction and can conclude that the conclusion follows from the premises

Resolution — Example 1

 $\begin{array}{l} (G \lor H) \to (\neg J \land \neg K), \ G \vdash \neg J \\ CNF[(G \lor H) \to (\neg J \land \neg K)] \equiv (\neg G \lor \neg J) \land (\neg H \lor \neg J) \land (\neg G \lor \neg K) \land \\ (\neg H \lor \neg K) \end{array}$

- 1. $\neg G \lor \neg J$ [Premise]
- 2. $\neg H \lor \neg J$ [Premise]
- 3. $\neg G \lor \neg K$ [Premise]
- 4. $\neg H \lor \neg K$ [Premise]
- 5. G [Premise]
- 6. $\neg \neg J$ [\neg Conclusion]
- 7. *J* [6. Double Negation]
- 8. $\neg G$ [1, 7. Resolution]
- 9. \Box [5, 8. Resolution]

Resolution — Example 2

$$P \to \neg Q, \ \neg Q \to R \vdash P \to R$$

$$P \to R \equiv \neg P \lor R$$
$$CNF[\neg(\neg P \lor R)] \equiv \{\neg \neg P, \neg R\}$$

1.
$$\neg P \lor \neg Q$$
 [Premise]

2.
$$\neg \neg Q \lor R$$
 [Premise]

3.
$$\neg \neg P$$
 [\neg Conclusion]

4.
$$\neg R$$
 [\neg Conclusion]

6.
$$\neg Q$$
 [1, 5. Resolution]

8.
$$\Box$$
 [4, 7. Resolution]

Resolution — Example 3

 $\vdash ((P \lor Q) \land \neg P) \to Q$

 $CNF[\neg(((P \lor Q) \land \neg P) \to Q)] \equiv (P \lor Q) \land \neg P \land \neg Q$

1. $P \lor Q$ [¬ Conclusion]

2. $\neg P$ [\neg Conclusion]

3. $\neg Q$ [\neg Conclusion]

4. *Q* [1, 2. Resolution]

5. \Box [3, 4. Resolution]

Soundness and Completeness — Recap

- An inference procedure (and hence a logic) is sound if and only if it preserves truth
- In other words \vdash is sound iff whenever $\lambda \vdash \rho$, then $\lambda \models \rho$
- A logic is complete if and only if it is capable of proving all truths
- In other words, whenever $\lambda \models \rho$, then $\lambda \vdash \rho$

Decidability

- A logic is decidable if and only if there is a mechanical procedure that, when asked $\lambda \vdash \rho$, can eventually halt and answer "yes" or halt and answer "no"
- Propositional logic is decidable

Heuristics in applying Resolution

Clause elimination — can disregard certain types of clauses

- > Pure clauses: contain literal *L* where $\neg L$ doesn't appear elsewhere
- > Tautologies: clauses containing both L and $\neg L$
- Subsumed clauses: another clause exists containing a subset of the literals
- Ordering strategies
 - Unit preference: resolve unit clauses (only one literal) first
- Many others ...

Conclusion

- We have now investigated one knowledge representation and reasoning formalism
- This means we can draw new conclusions from the knowledge we have; we can reason
- Have enough to build a knowledge-based agent
- However, propositional logic is a weak language; there are many things we can't express in it
- It cannot be used to express knowledge about objects, their properties and the relationships that exist between objects
- For this purpose we need a more expressive language: first-order logic

COMP4418