
COMP1511 - Programming
Fundamentals

Week 5 - Lecture 10

What did we cover last lecture?
Debugging

● How to think about different bugs (code errors)
● Some tricks and techniques to remove bugs from our code

Characters

● A new variable type!
● Letters and other symbols

What are we covering today?
Characters

● Continuing characters

Strings

● Words that contain multiple characters

Command Line Arguments

● Input at the moment the program starts running

Characters recap
#include <stdio.h>

int main (void) {
 // we're using an int to represent a single character
 int character;
 // we can assign a character value using single quotes
 character = 'a';
 // This int representing a character can be used as either
 // a character or a number
 printf("The letter %c has the ASCII value %d.\n",
 character, character
);
 return 0;
}

Note the use of %c in the printf will format the variable as a character

Helpful Functions
getchar() is a function that will read a character from input

● Reads a byte from standard input
● Usually returns an int between 0 and 255 (ASCII code of the byte it read)
● Can return a -1 to signify end of input, EOF (which is why we use an int,

not a char)
● Sometimes getchar won’t get its input until enter is pressed at the end of

a line

putchar() is a function that will write a character to output

● Will act very similarly to printf("%c", character);

Use of getchar() and putchar()

// using getchar() to read a single character from input
int input_char;
printf("Please enter a character: ");
input_char = getchar();
printf("The input %c has the ASCII value %d.\n", input_char,
input_char);

// using putchar() to write a single character to output
putchar(input_char);

Invisible Characters
There are other ASCII codes for “characters” that can’t be seen

● Newline(\n) is a character
● Space is a character
● There’s also a special character, EOF (End of File) that signifies that there’s

no more input
● EOF has been #defined in stdio.h, so we use it like a constant
● We can signal the end of input in a Linux terminal by using Ctrl-D

Working with multiple characters
We can read in multiple characters (including space and newline)

This code is worth trying out . . . you get to see that space and newline have
ASCII codes!

 // reading multiple characters in a loop
 int read_char;
 read_char = getchar();
 while (read_char != EOF) {
 printf(
 "I read character: %c, with ASCII code: %d.\n",
 read_char, read_char
);
 read_char = getchar();
 }

More Character Functions
<ctype.h> is a useful library that works with characters

● int isalpha(int c) will say if the character is a letter
● int isdigit(int c) will say if it is a numeral
● int islower(int c) will say if a character is a lower case letter
● int toupper(int c) will convert a character to upper case

● There are more! Look up ctype.h references or man pages for more
information

Strings
When we have multiple characters together, we call it a string

● Strings in C are arrays of char variables
● Strings are like words (or sentences), while chars are single letters

● Strings have a helping element at the end, a character: '\0'
● It’s often called the 'null terminator' and it is an invisible character
● This marks the end of the string
● It helps us because we know we won't read any further into the array

Strings in Code
Strings are arrays of type char, but they have a convenient shorthand

Both of these strings will be created with 6 elements. The letters h,e,l,l,o
and the null terminator \0

 // a string is an array of characters
 char word1[] = {'h','e','l','l','o','\0'};
 // but we also have a convenient shorthand
 // that feels more like words
 char word2[] = "hello";

h e l l o \0

Reading and writing strings
fgets(array[], length, stream) is a useful function for reading
strings

● It will take up to length number of characters
● They will be written into the array
● The characters will be taken from a stream
● Our most commonly used stream is called stdin, “standard input”

● stdin is our user typing input into the terminal

Reading and writing strings in code

● fputs(array, stream) works very similarly to printf
● It will output the string stored in the array to a stream
● We can use stdout which is our stream to write to the terminal

 // reading and writing lines of text
 char line[MAX_LINE_LENGTH];
 while (fgets(line, MAX_LINE_LENGTH, stdin) != NULL) {
 fputs(line, stdout);
 }

Helpful Functions in the String Library
<string.h> has access to some very useful functions

Note that char *s is equivalent to char s[] as a function input

● int strlen(char *s) - return the length of the string (not including \0)
● strcpy and strncpy - copy the contents of one string into another
● strcat and strncat - attach one string to the end of another
● strcmp and variations - compare two strings
● strchr and strrchr - find the first or last occurrence of a character
● And more . . .

Command Line Arguments
Sometimes we want to give information to our program at the moment
when we run it

● The "Command Line" is where we type in commands into the terminal
● Arguments are another word for input parameters

● This extra text we type after the name of our program can be passed into
our program as strings

$./program extra information 1 2 3

Main functions that accept arguments
int main doesn't have to have void input parameters!

● argc will be an "argument count"
● This will be an integer of the number of words that

were typed in (including the program name)
● argv will be "argument values"
● This will be an array of strings where each string is one

of the words

int main(int argc, char *argv[]) {
}

An example of use of arguments and strings

#include <stdio.h>

int main(int argc, char *argv[]) {
 int i = 1;
 printf("Well actually %s says there's no such thing as ", argv[0]);
 while (i < argc) {
 fputs(argv[i], stdout);
 printf(" ");
 i++;
 }
 printf("\n");
}

Arguments in argv are always strings
But what if we want to use things like numbers?

● We can read the strings in, but we might want to process them

● In this example, how do we read 1 2 3 as numbers?
● We can use a library function to convert the strings to integers!
● strtol() - "string to long integer" is from the stdlib.h

$./program extra information 1 2 3

Code for transforming strings to ints

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
 int total = 0;

 int i = 1;
 while (i < argc) {
 total += strtol(argv[i], NULL, 10);
 i++;
 }
 printf("Total is %d.\n", total);

}

Adding together the command line arguments

Break Time
We're roughly halfway through COMP1511

● This time can sometimes be rough
● Sometimes, we're just holding on until the end of the term

● Remember that you only have to take one step at a time
● Your goals might be so far away that you can't think of how to reach them
● But you only have to move a little bit towards them at a time
● And you'll get there eventually!

Whooaaah We're Halfway There . . .
We're going to use a bit of everything we've seen so far in COMP1511

This program is a rhyming helper

● It will read in a string from the command line
● It will then read in another string from the user and tell us whether it

thinks they might rhyme
● It does this by checking the input string against the last word in the

command line and seeing how similar they are
● This will use nearly all the topics we've covered so far in COMP1511

Where will we start?
A simple version to begin with

● Let's read in a string from the command line
● Then read in a single character from standard input and see whether it's

in the string or not

Then we complicate things

● We'll try to compare two strings and see if they're similar

Read in strings from the command line

int main(int argc, char *argv[]) {
 if (argc <= 1) {
 // there's no extra input on the command line!
 printf("You can't rhyme with nothing!\n");
 } else {
 // continue with the rest of the program

We're expecting these on the command line, so let's check there

● argc should tell us how many strings there are

Read in a single character
Starting simple, we can take a character as input

● getchar() will read a single character from standard input
● Remember that we'll be using int as our type for individual characters

 // starting with "input_char = EOF" lets us know later
 // whether getchar() replaced it with a character
 // or not
 int input_char = EOF;
 input_char = getchar();
 if (input_char != EOF) {
 // we know we've read a character
 }

A Function to find a character in a string
Looping through a string until the null terminator

int check_letter(int letter, char word[]) {
 int found_index = -1;
 int i = 0;

 // The while loop check will loop through
 // until the string is terminated.
 while (word[i] != '\0') {
 if (word[i] == letter) {
 found_index = i;
 }
 i++;
 }
 return found_index;
}

We're interested in the last word
How do we know what the last word is?

● argc tells us how many words there are!
● So the index of the last word is argc - 1
● We can check for the letter in the last word

 // argv[argc - 1] is the last word of the command line
 int found_letter = check_letter(input_char, argv[argc - 1]);

Testing a whole word
We could loop getchar() to grab multiple characters

● Or we can try another library function that grabs a whole line of text!
● fgets() will read a line from standard input

 // read a line of input
 char input_line[MAX_LENGTH];
 printf("Please enter a word to test for rhyming.\n");
 fgets(input_line, MAX_LENGTH, stdin);

How well do two words rhyme?
How many letters appear in the other word (not a great test for rhyming)

double rhyming_amount(char word1[], char word2[]) {
 // Loop through word1 and check if the letter is in word2
 int match_count = 0;
 int i = strlen(word1) - 1;
 while (i >= 0) {
 int found_letter = check_letter(word1[i], word2);
 if (found_letter >= 0) {
 // found the same letter in the final word
 match_count++;
 }
 i--;
 }
 return (match_count * 1.0)/strlen(word1);
}

Using Library Functions
Where does the strlen() come from?

● This function will tell us how long a string is
● We need to #include <string.h> to use it

Are we sure our program is working?
What tests should we run at this point?

● Look for syntax errors using our compiler (dcc)
● Look for logical errors by testing with different inputs

We might need to add in some extra outputs

● If we're getting strange behaviour, we can confirm our guesses
● We might learn more about what's going on in our program

Are there more characters than we intended?
What kind of tests will help us identify the characters?

● Some temporary print statements can help here

int check_letter(char letter, char word[]) {
 printf("Checking for %c", letter);
 printf("in word %s.\n", word);

double rhyming_amount(char word1[], char word2[]) {
 printf("Checking %s", word1);
 printf("against %s.\n", word2);

Dealing with little issues
We're reading newlines (\n) as characters!

● Let's remove the newlines from our fgets() result
● We'll look for \n at the end of the string
● We'll then replace the \n with \0 which will end the string early

Removing a suspected newline

// read a line of input
 char input_line[MAX_LENGTH];
 printf("Please enter a word to test for rhyming.\n");
 fgets(input_line, MAX_LENGTH, stdin);

// check for a \n at the end of the input and remove it
 int last_letter = strlen(input_line) - 1;
 if (input_line[last_letter] == '\n') {
 input_line[last_letter] = '\0';
 }

Removing a \n at the end of a string:

A simple rhyming helper
What coding concepts have we used here that we want to remember?

● Characters and Strings (note that we'll never need to memorise the ASCII
table to work with characters)

● Using libraries and provided functions
● Loops on strings (using the Null Terminator \0)
● Writing multiple functions and using functions within functions
● A lot of our basic C concepts like if, while and array indexing

Challenge?
You may have noticed that rhyming_amount() loops backwards . . .

● A challenge . . . for bonus Marcs (no actual marks)
● Rhyming amount is a bit simplistic, just checking letter matches
● Can you extend it so that it specifically starts at the end of the words and

works backwards and tests the matches for the exact ordering of letters?
● Eg: "light" rhymes with "tonight" because they both end in the same four

letters
● There are also more standard library functions that might be able to

replace some of our code . . . see if you can discover them

What did we learn today?
Characters and Strings

● Expanding our variables to letters and words
● A code example to show some of the use of strings
● Using libraries to make strings easier

Command Line Arguments

● How to take information from the same line that runs the program

