COMP1511 - Programming
Fundamentals

— Week 5 - Lecture 10 —

What did we cover last lecture?

Debugging

e How to think about different bugs (code errors)
e Some tricks and techniques to remove bugs from our code

Characters

e A new variable type!
e Letters and other symbols

What are we covering today?

Characters

e Continuing characters
Strings

e Words that contain multiple characters
Command Line Arguments

e Input at the moment the program starts running

Characters recap

#include <stdio.h>

int main (void) {
// we're using an int to represent a single character
int character;
// we can assign a character value using single quotes
character = 'a’';
// This int representing a character can be used as either
// a character or a number
printf ("The letter %c has the ASCII value %d.\n",

character, character

);
return 0O;

}
Note the use of %c in the printf will format the variable as a character

Helpful Functions

getchar () is a function that will read a character from input

e Reads a byte from standard input
e Usually returns an int between 0 and 255 (ASCII code of the byte it read)

e Canreturn a-1 to signify end of input, EOF (which is why we use an int,

not a char)
e Sometimes getchar won't get its input until enter is pressed at the end of

aline
putchar () is a function that will write a character to output

e Will act very similarly to printf ("%c", character) ;

Use of getchar() and putchar()

// using getchar() to read a single character from input
int input_char;

printf ("Please enter a character: ");

input char = getchar();

printf ("The input %c has the ASCII value %d.\n", input_char,
input char);

// using putchar() to write a single character to output
putchar (input_char) ;

Invisible Characters

There are other ASCII codes for “characters” that can’'t be seen

e Newline(\n)is a character

e Space is a character

e There's also a special character, EOF (End of File) that signifies that there's
no more input

e EOF has been #defined in stdio.h, so we use it like a constant

e We can signal the end of input in a Linux terminal by using Ctrl-D

Working with multiple characters

We can read in multiple characters (including space and newline)

This code is worth trying out . . . you get to see that space and newline have
ASCII codes!

// reading multiple characters in a loop
int read char;
read char = getchar();
while (read char != EOF) ({
printf (
"I read character: %c, with ASCII code: %d.\n",
read char, read char
) ;

read char = getchar();

More Character Functions

<ctype.h> is a useful library that works with characters

int isalpha (int c) will say if the character is a letter

int isdigit(int c¢) will sayifitis a numeral

int islower (int c¢) will say if a character is a lower case letter
int toupper (int c) will convert a character to upper case

e There are more! Look up ctype.h references or man pages for more
information

Strings

When we have multiple characters together, we call it a string

Strings in C are arrays of char variables
Strings are like words (or sentences), while chars are single letters

Strings have a helping element at the end, a character: '\0"

It's often called the 'null terminator' and it is an invisible character
This marks the end of the string

It helps us because we know we won't read any further into the array

Strings in Code

Strings are arrays of type char, but they have a convenient shorthand

// a string is an array of characters

char wordl[] = {'h','e','1",'1",'0","'\0"};
// but we also have a convenient shorthand
// that feels more like words

char word2[] = "hello";

Both of these strings will be created with 6 elements. The lettersh,e,1,1,0
and the null terminator \ 0

h | e I I o | \0

Reading and writing strings

fgets (array[], length, stream) is a useful function for reading
strings

It will take up to 1length number of characters

They will be written into the array

The characters will be taken from a stream

Our most commonly used stream is called stdin, “standard input”

e stdin isour user typing inputinto the terminal

Reading and writing strings in code

// reading and writing lines of text

char line[MAX LINE LENGTH];
while (fgets(line, MAX LINE LENGTH, stdin) !'= NULL) ({

fputs (line, stdout);
}

e fputs(array, stream) works very similarly to printf

e It will output the string stored in the array to a stream

e We can use stdout wWhich is our stream to write to the terminal

Helpful Functions in the String Library

<string.h> has access to some very useful functions

Note that char *s is equivalentto char s[] as a function input

int strlen(char *s) -return the length of the string (not including \0)
strcpy and strncpy - copy the contents of one string into another
strcat and strncat - attach one string to the end of another

stremp and variations - compare two strings

strchr and strrchr - find the first or last occurrence of a character

And more...

Command Line Arguments

Sometimes we want to give information to our program at the moment
when we run it

e The "Command Line" is where we type in commands into the terminal
e Arguments are another word for input parameters

$./program extra information 1 2 3

e This extra text we type after the name of our program can be passed into
our program as strings

Main functions that accept arguments

int main doesn't have to have void input parameters!

int main(int argc, char *argv[]) ({

}

' THEN WHATISIT?
e argc will be an "argument count”

e This will be an integer of the number of words that w0 __1 7‘.
were typed in (including the program name)

e argv will be "argument values"

e This will be an array of strings where each string is one
of the words

An example of use of arguments and strings

#include <stdio.h>

int main(int argc, char *argv[]) {
int i = 1;
printf ("Well actually %s says there's no such thing as ", argv[0]);
while (i < argc) {
fputs (argv[i], stdout)
print£(" ") ;
i++;
}
printf("\n");

Arguments in argv are always strings

But what if we want to use things like numbers?

e We can read the strings in, but we might want to process them

$./program extra information 1 2 3

e Inthis example, howdoweread1l 2 3 asnumbers?
e We can use a library function to convert the strings to integers!
e strtol() - "stringtolonginteger"is from the stdlib.h

Code for transforming strings to ints

Adding together the command line arguments

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) ({
int total = 0;

int 1 = 1;

while (i < argc) {
total += strtol(argv[i], NULL, 10);
i++;

}

printf ("Total is %d.\n", total);

Break Time

We're roughly halfway through COMP1511

e This time can sometimes be rough
Sometimes, we're just holding on until the end of the term

Remember that you only have to take one step at a time

Your goals might be so far away that you can't think of how to reach them
But you only have to move a little bit towards them at a time

And you'll get there eventually!

Whooaaah We're Halfway There...

We're going to use a bit of everything we've seen so far in COMP1511
This program is a rhyming helper

e |Itwill readin a string from the command line

e Itwill then read in another string from the user and tell us whether it
thinks they might rhyme

e |t does this by checking the input string against the last word in the

command line and seeing how similar they are
e This will use nearly all the topics we've covered so far in COMP1511

Where will we start?

A simple version to begin with

e Let'sread in astring from the command line
e Thenread in asingle character from standard input and see whether it's
in the string or not

Then we complicate things

e We'll try to compare two strings and see if they're similar

Read in strings from the command line

We're expecting these on the command line, so let's check there

e argc should tell us how many strings there are

int main(int argc, char *argv[]) {
if (argc <= 1) {
// there's no extra input on the command line!
printf ("You can't rhyme with nothing!\n");
} else {
// continue with the rest of the program

Read in a single character

Starting simple, we can take a character as input

e getchar () will read a single character from standard input
e Remember that we'll be using int as our type for individual characters

// starting with "input char = EOF" lets us know later
// whether getchar() replaced it with a character
// or not
int input_char = EOF;
input char = getchar();
if (input_char != EOF) ({
// we know we've read a character

}

A Function to find a character in a string

Looping through a string until the null terminator

int check letter(int letter, char word[]) ({
int found;index = -1;
int 1 = 0;

// The while loop check will loop through
// until the string is terminated.
while (word[i] '= '\0'") {

if (word[i] == letter) {

found index = i;

}

it++;
}

return found index;

We're interested in the last word

How do we know what the last word is?

e argc tells us how many words there are!
e Sotheindex of the lastword isarge - 1
e We can check for the letter in the last word

// argv[argc - 1] is the last word of the command line
int found letter = check letter (input_char, argv[argc - 1]);

Testing a whole word

We could loop getchar () to grab multiple characters

e Or we can try another library function that grabs a whole line of text!
e fgets () will read a line from standard input

// read a line of input

char input line[MAX LENGTH];

printf ("Please enter a word to test for rhyming.\n");
fgets (input_line, MAX LENGTH, stdin);

How well do two words rhyme?

How many letters appear in the other word (not a great test for rhyming)

double rhyming amount (char wordl[], char word2[]) {
// Loop through wordl and check if the letter is in word2
int match count = 0;
int i = strlen(wordl) - 1;
while (i >= 0) {
int found letter = check letter (wordl[i], word2);
if (found letter >= 0) {
// found the same letter in the final word
match count++;
}
i--;
}

return (match count * 1.0)/strlen(wordl) ;

Using Library Functions

Where does the strlen () come from?

e This function will tell us how long a string is
e We needto #include <string.h>to use it

Are we sure our program is working?

What tests should we run at this point?

e Look for syntax errors using our compiler (dcc)
e Look for logical errors by testing with different inputs

We might need to add in some extra outputs

e |f we're getting strange behaviour, we can confirm our guesses
e We might learn more about what's going on in our program

Are there more characters than we intended?

What kind of tests will help us identify the characters?

e Some temporary print statements can help here

int check letter(char letter, char word[]) {
printf ("Checking for %c", letter);
printf("in word %s.\n", word);

double rhyming amount (char wordl[], char word2[]) {
printf ("Checking %s'", wordl);
printf ("against %s.\n", word2);

Dealing with little issues

We're reading newlines (\n) as characters!

e Let's remove the newlines from our £gets () result
e We'll look for \n at the end of the string
e We'll then replace the \n with \0 which will end the string early

Removing a suspected newline

Removing a \n at the end of a string:

// read a line of input
char input line[MAX LENGTH];
printf ("Please enter a word to test for rhyming.\n");
fgets (input line, MAX LENGTH, stdin);

// check for a \n at the end of the input and remove it
int last letter = strlen(input line) - 1;
if (input line[last letter] == '\n') {
input line[last letter] = '\0';
}

A simple rhyming helper
What coding concepts have we used here that we want to remember?

e Characters and Strings (note that we'll never need to memorise the ASCII
table to work with characters)

Using libraries and provided functions

Loops on strings (using the Null Terminator \0)

Writing multiple functions and using functions within functions

A lot of our basic C concepts like if, while and array indexing

Challenge?

You may have noticed that rhyming amount () loops backwards. ..

A challenge . .. for bonus Marcs (no actual marks)

Rhyming amount is a bit simplistic, just checking letter matches

Can you extend it so that it specifically starts at the end of the words and
works backwards and tests the matches for the exact ordering of letters?
Eg: "light" rhymes with "tonight" because they both end in the same four
letters

There are also more standard library functions that might be able to
replace some of our code.. .. see if you can discover them

What did we learn today?

Characters and Strings

e Expanding our variables to letters and words
e A code example to show some of the use of strings
e Using libraries to make strings easier

Command Line Arguments

e How to take information from the same line that runs the program

