
COMP1511 18s1 — Lecture 13

Intensity, Temporality, Complexity

Andrew Bennett
<andrew.bennett@unsw.edu.au>

Jashank Jeremy
<jashank.jeremy@unsw.edu.au>

Admin

Don't panic!
assignment 2 is here!

discussion: coming up shortly
Weekly test #4 … due tonight 23:59:59 AEST
week 8 (next week) is quiet week!

no lectures! no tutorials! no labs!
… help sessions still running

Overview

After this lecture, you should be able to…

use composite data types as a part of a software system,
use and reason about lifetimes, scope, and dynamic memory,

(note: you shouldn't be able to do all of these immediately after watching this lecture. however, this lecture should (hopefully!)
give you the foundations you need to develop these skills. remember: programming is like learning any other language, it takes
consistent and regular practice.)

Assignment 2: Intensity!

speci�cation

10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49

referee: 1511 intensity_referee
plays your code against Lulu, Morgan, Amy

https://cgi.cse.unsw.edu.au/~cs1511/18s1/assignments/ass2/index.html

More C

break, continue

Keywords that allow us to change
control �ow in our program.

Usually a bad idea…
Style Guide

… § Avoid These C Features

https://cgi.cse.unsw.edu.au/~cs1511/18s1/resources/style_guide.html
https://cgi.cse.unsw.edu.au/~cs1511/18s1/resources/style_guide.html#avoid

for

Is terseness always better?

init;
while (cond) {
 body;
 step;
}

for (init; cond; step) {
 body;
}

Lifetimes and Scope

Stack Frames and Lifetimes

in a stack frame…
previous frame, return address,

parameters, return values,
local variables

values on the stack will only live
as long as the stack frame does…

lifetimes of stack variables are
bounded by the stack frame.

Review: Staying Alive

Pass a reference up:
Push the value down.

Take a reference lower on the stack,
pass it up the stack to called functions

Globals! Statics!
absolutely goddamn' not.

Ask for memory elsewhere
Manage your own dynamic allocations

using malloc, calloc, free

malloc, calloc, free

three functions for managing heap allocations

malloc: make an allocation

request nBytes of uninitialised memory;
return a reference to that, or NULL if it goes wrong.

void *malloc (size_t nBytes);

calloc: contiguous allocation

request nItems * itemSize bytes of memory, initialised to zero;
return a reference to that, or NULL if it goes wrong.

void *calloc (size_t nItems, size_t itemSize);

free: release allocation

release memory associated with a reference.
must be the same reference we got when allocating!

we can get allocated references back from functions;
they will explicitly say what is needed to free them.

void free (void *obj);

Newton's Third Law of Memory Management

"For every malloc, there is an equal and opposite free."

Why?
Memory is a �nite resource.

Leaking memory is bad practice,
especially in long-lived programs.

(see, e.g., Chrome)

Aside: Things Go Wrong

Wouldn't it be nice
if everything worked perfectly,

all the time?

jashank@emeralfel:~$./remember
remember: couldn't allocate: Out of memory

#include <err.h>
#include <stdlib.h>

int *xs = calloc (10, sizeof (int));
if (xs == NULL) {
 err (1, "couldn't allocate");
}

Aside: Casting

C has static types:
data must be of the declared type.

C has weak types:
you can turn one type into another type,

using a type cast.
(You should never actually do this.)

Some C references (e.g., older textbooks, the Internet)
will make you do an explicit type-cast;
this is discouraged by our style guide

(and isn't needed anyway):

int *xs = (int *) calloc (4, sizeof (int));
// is equivalent to
int *xs = calloc (4, sizeof (int));

A Complex Composition

struct

a way to group together
related data of differing types

we refer to the individual pieces of data
as �elds or members

typedef struct _type-name {
 type member;
 [...]
} type-name;

Aside: typedef

Why?
create meaning with better names

hide details of implementation
(… save typing)

// refer to this type
// v~~~~~~~~~~~~~~~~~
typedef existing_type_name new_type_name;
// ^~~~~~~~~~~~~
// with a better name!

Aside: struct tags

A unique name in the space of struct names.
Only meaningful associated with struct keyword.

// v~~
struct tag {
 field_type name;
};

struct tag instance;

Complex Numbers

two pieces of related data!

z = x+ iy

A complex structure

typedef struct _complex {
 double real;
 double imag;
} complex;

