Exercise sheet 4
COMP6741: Parameterized and Exact Computation
Serge Gaspers
19T3

Exercise 1. A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction (AND) of disjunctions (OR) of literals (a Boolean variable or its negation). A HORN formula is a CNF formula where each clause contains at most one positive literal. For a CNF formula F and an assignment $\tau : S \rightarrow \{0, 1\}$ to a subset S of its variables, the formula $F[\tau]$ is obtained from F by removing each clause that contains a literal that evaluates to 1 under S, and removing all literals that evaluate to 0 from the remaining clauses.

HORN-BACKDOOR DETECTION
Input: A CNF formula F and an integer k.
Parameter: k
Question: Is there a subset S of the variables of F with $|S| \leq k$ such that for each assignment $\tau : S \rightarrow \{0, 1\}$, the formula $F[\tau]$ is a HORN formula?

Example: $(-a \lor b \lor c) \land (b \lor \neg c \lor \neg d) \land (a \lor b \lor \neg c) \land (\neg b \lor c \lor \neg e)$ with $k = 1$ is a Yes-instance, certified by $S = \{b\}$.

- Show that HORN-BACKDOOR DETECTION is FPT using the fact that VERTEX COVER is FPT.

Exercise 2. Show that WEIGHTED CIRCUIT SATISFIABILITY \in XP.

Exercise 3. Recall that a k-coloring of a graph $G = (V, E)$ is a function $f : V \rightarrow \{1, 2, ..., k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

MULTICOLORED CLIQUE
Input: A graph $G = (V, E)$, an integer k, and a k-coloring of G
Parameter: k
Question: Does G have a clique of size k?

- Show that MULTICOLORED CLIQUE is W[1]-hard.

Exercise 4. A set system S is a pair (V, H), where V is a finite set of elements and H is a set of subsets of V. A set cover of a set system $S = (V, H)$ is a subset X of H such that each element of V is contained in at least one of the sets in X, i.e., $\bigcup_{Y \in X} Y = V$.

SET COVER
Input: A set system $S = (V, H)$ and an integer k
Parameter: k
Question: Does S have a set cover of cardinality at most k?
• Show that Set Cover is W[2]-hard.

Exercise 5. A hitting set of a set system $S = (V, H)$ is a subset X of V such that X contains at least one element of each set in H, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

<table>
<thead>
<tr>
<th>Hitting Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Parameter:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
</tbody>
</table>

• Show that Hitting Set is W[2]-hard.