1 🔒 Doubly linked lists

Modify the module linked_list.py which is part of the material of the 8th lecture into a module doubly_linked_list.py, to process lists consisting of nodes with a reference to both next and previous nodes, so with the class Node defined as follows.

```python
class Node:
    def __init__(self, value = None):
        self.value = value
        self.next_node = None
        self.previous_node = None
```

2 Using linked lists to represent polynomials

Write a program that implements a class Polynomial. An object of this class is built from a string that represents a polynomial, that is, a sum or difference of monomials.

- The leading monomial can be either an integer, or an integer followed by x, or an integer followed by x^k followed by a nonnegative integer.
- The other monomials can be either a nonnegative integer, or an integer followed by x, or an integer followed by x^k followed by a nonnegative integer.

Spaces can be inserted anywhere in the string.

A monomial is defined by the following class:

```python
class Monomial:
    def __init__(self, coefficient = 0, degree = 0):
        self.coefficient = coefficient
        self.degree = degree
        self.next_monomial = None
```

A polynomial is a linked list of monomials, ordered from those of higher degree to those of lower degree. An implementation of the `__str__()` method allows one to print out a polynomial.

Next is a possible interaction.
```python
>>> from polynomial import *
>>> Polynomial('-0')
Incorrect input
>>> Polynomial('+0')
Incorrect input
>>> Polynomial('0x^-1')
Incorrect input
>>> Polynomial('2x + +2')
Incorrect input
>>> Polynomial('2x + -2')
Incorrect input
>>> Polynomial('2x - +2')
Incorrect input
>>> poly_0 = Polynomial('0')
>>> print(poly_0)
0
>>> poly_0 = Polynomial('0x')
>>> print(poly_0)
0
>>> poly_0 = Polynomial('0x^0')
>>> print(poly_0)
0
>>> poly_0 = Polynomial('0x^5')
>>> print(poly_0)
0
>>> poly_1 = Polynomial('x')
>>> print(poly_1)
x
>>> poly_1 = Polynomial('1x')
>>> print(poly_1)
x
>>> poly_1 = Polynomial('1x^1')
>>> print(poly_1)
x
>>> poly_1 = Polynomial('1x^1')
>>> print(poly_1)
x
>>> poly_1 = Polynomial('2')
>>> print(poly_2)
2
>>> poly_2 = Polynomial('2x^0')
>>> print(poly_2)
2
>>> poly_3 = Polynomial('1 + 2-3 +10')
>>> print(poly_3)
10
>>> poly_4 = Polynomial('x + x - 2x -3x^-1 + 3x')
>>> print(poly_4)
0
>>> poly_5 = Polynomial('x + 2 + x - x -3x^-1 + 3x + 5x^-0')
>>> print(poly_5)
x + 7
>>> poly_6 = Polynomial('2x + 7x^-3 +x - 0 + 2 -x^-3 + x^-23 - 12x^-8 + 45 x^-6 -x^-47')
>>> print(poly_6)
-x^-47 + x^-23 - 12x^-8 + 45x^-6 + 6x^-3 - x + 2
```