COMP4418: Knowledge
Representation and Reasoning

Introduction to Prolog

Maurice Pagnucco
School of Computer Science and Engineering
University of New South Wales
NSW 2052, AUSTRALIA

morri@cse.unsw.edu.au

Reference: Ivan Bratko, Prolog Programming for Artificial Intelligence, Addison-
Wesley, 2001. Chapters 1 and 2.

COMP4418 ©UNSW, 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Prolog

Prolog — Programming in Logic

Invented early 70s by Alain Colmeraurer et al., University of
Marseille
Declarative language

Specify goal and interpreter/compiler will work out how to
achieve it

Traditional (imperative) languages require you to specify how to
solve problem

Prolog program specifies:
facts about objects and their relationships

rules about objects and their relationships

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Starting Prolog

$ prolog

iProlog (8 April 2001)

: "D

$

$ prolog courses.pl

iProlog (8 April 2001)
lectures (maurice, comp4418)7

** yes

: "D

$

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Relations

Prolog programs specify relationships among objects and properties
of objects

When we say, “John owns the book™, we are declaring the ownership
relation between two objects: John and the book

When we ask, “Does John own the book?”, we are querying the
relationship

Relationships can also be rules such as:

Two people are sisters if
both are female
they have the same parents

This 1s a rule that allows us to find out about a relationship even if the
relationship isn’t explicitly declared

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Programming in Prolog

Declare facts describing explicit relationships between objects and
properties of objects

Define rules describing implicit relationships between objects or
implicit object properties

Ask questions about relationships between objects and object
properties

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Representing Regulations

The rules for entry into a professional computer science society are set out
below:

An applicant to the society 1s acceptable if he or she has been
nominated by two established members of the society and is
eligible under the terms below:

the applicant graduated with a university degree
the applicant has two years of professional experience
the applicant pays a joining fee of $200.

An established member 1s one who has been a member for at
least two years.

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Facts

Properties of objects; relationshps between objects

Example
“Maurice lectures in course COMP4418”

Prolog: lectures(maurice, comp4418)

Notice
Names of properties/relationships begin with lower-case character

Name of relationship appears as first term, objects appear as
arguments

Fact terminated by °.

Objects (atoms) also begin with lower-case characters

lectures (maurice, 4418) also called a predicate

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017

Facts

Let us return to the regulations example:

experience(fred, 3).
fee_paid(fred).
graduated(fred, unsw).
university(unsw) .
nominated_by(fred, jim).
nominated_by(fred, mary).
joined(jim, 1998).
joined(mary, 1997).
current_year (2001).

COMP4418 ©UNSW, 2017

Introduction to Prolog

Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Prolog Database

A collection of facts about a hypothetical computer science department:

% lectures(X, Y): person X lectures in course Y
lectures(tony, compl001).
lectures(andrew, comp2041).
lectures(john, comp2041).
lectures(gernot, comp3231).
lectures(arun, comp4141).
lectures(sowmya, comp4411).
lectures(claude, comp4411).
lectures(maurice, comp4418).
lectures(adnan, comp4418).
lectures(adnan, comp9518).
lectures(wayne, comp4418).
lectures(arthur, comp9020).

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

% studies(X, Y): person X studies course Y
studies(mary, compl1001).

studies(jim, compl1001).

studies(jane, comp4411).

studies(jane, comp4418).

studies(jack, comp9518).

studies(jack, comp9020).

% year(X, Y): person X is in year Y
year (mary, 1).

year(jim, 1).

year (jane, 4).

year (jack, 4).

Together, these facts form Prolog’s database.

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Queries

Once we have a database of facts (and, soon, rules) we need to be
able to ask questions of the information that is stored

lectures(maurice, comp4418)7

Notice:
Query is terminated by a question mark “?’

To determine answer (yes or no), Prolog consults database
checking whether this is a known fact

For example, 1lectures (bob,comp4418) 7
*x*Nno

If answer 1s yes, query succeeded; otherwise, if answer is no,
query failed

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

10

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Variables

Suppose we want to ask, “What subject does John teach?”

This could be phrased as:
Is there a subject, X, that John teaches?

The variable X stands for an object that the questioner does not yet
know about

To answer the question, Prolog has to find the value of X, if it exists

As long as we do not know the value of the variable, it is said to be
unbound

When a value 1s found, the variable is bound to that value

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

11

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Variables

A variable must begin with a capital letter or *_’

To ask Prolog to find the subject that John teaches, type:

lectures(john, Subject)?

Subject = comp2041

To ask which subjects that Adnan teaches, ask:

lectures(adnan, X)?

X

comp4418

X = comp9518
Prolog can find all possible ways to satisfy a query

COMP4418 ©UNSW, 2017

Generated: 26 July 2017

12

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Conjunction in Queries

How do we ask, “Does Arthur teach Jack?”

This can be answered by finding out whether Arthur lectures in a
subject that Jack studies:
lectures(arthur, Subject), studies(jack, Subject)?

1.e., Arthur lectures in subject, Subject, and Jack studies subject,
Subject.

Subject is a variable
The question consists of two goals

To find the answer, Prolog must find a single value for Subject that
satisfies both goals

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

13

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog 14

Conjunctions

Who does Adnan teach:
lectures(adnan, Subject), studies(Student, Subject)?

Subject = comp4418
Student = jane

Subject = comp9518

Student = jack _ .
Prolog solves problems by proceedings left to right and then

backtracking

Given the initial query, Prolog tries to solve
lectures(adnan, Subject)

There are twelve lectures clauses but only two have adnan as first
argument

Prolog chooses the first clause containing a reference to adan i.e.,
lectures(adnan, 4418)

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Proof Tree

With Subject = 4418, it then tries to satisfy the next goal, viz
studies(Student, 4418)

After the solution is found, Prolog retraces its steps and looks for
alternative solutions

It may now go down the branch containing lectures (adnan, 9518)
and try studies(Student, 9518)

| ectures(adnan, Subject), studies(Student, Subject)?

| ectures(adnan, 9414) | ectures(adnan, 9518)

st udi es(j ane, 9414) st udi es(j ack, 9518)

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

15

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Rules

The previous question can be restated as a general rule:

One person, Teacher teaches another person, Student if
Teacher lectures subject, Subject and
Student studies Subject

In Prolog this 1s written as the:

teaches(Teacher, Student) :- ¥ This is a clause
lectures(Teacher, Subject),
studies(Student, Subject).

teaches(adnan, Student)?

Facts are unit clauses and rules are non-unit clauses

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

16

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog 17

Rules

acceptable(Applicant) :-
nominated (Applicant),
eligible(Applicant) .

nominated (Applicant) :-
nominated_by(Applicant, Memberl),
nominated_by(Applicant, Member2),
Member1l \= Member?2,
current_year (ThisYear),
joined (Memberl, Yearl), ThisYear >= Yearl + 2,
joined (Member2, Year2), ThisYear >= Year2 + 2,.

eligible(Applicant) :-
graduated (Applicant, University), university(University),
experience(Applicant, Experience), Experience >= 2,
fee_paid(Applicant).

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Clause Syntax

‘:=" means “if” or “is implied by”. Also called “neck”
The left hand side of the neck 1s the head
The right hand side is called the body

The comma, °, separating the goals stands for and

more_advanced(Studentl, Student2) :-
year (Studentl, Yearl),
year (Student2, Year2),
Yearl > Year?2.

Note the use of the predefined predicate ‘>’

more_advanced(jane, mary)?
more_advanced(jack, X)7

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

18

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog 19

Structures

Functional terms can be used to construct complex data structures

E.g., to say that John owns the book Foundation, this may be
expressed as:
owns (john, ’Foundation’).

Often objects have a number of attributes

A book may have a title and an author:
owns (john, book(’Foundation’, asimov)).

To be more accurate we should give the author’s family and given
names: owns(john, book(’Foundation’, author(asimov, isaac))).

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog 20

Asking Questions with Structures

How do we ask:
“What books does John own that were written by someone called
“Asimov’’?

owns (john, book(Title, author(asimov, GivenName)))?
Title = Foundation
GivenName = isaac

owns (john, Book)?
Book = book(Foundation, author(asimov, isaac))

owns (john, book(Title, Author))?

Title = Foundation
Author = author(asimov, isaac)

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Databases

A database of books in a library contains facts of the form:
book(CatNo, Title, author(Family, Given)).
member (MemNo, name(Family, Given), Address).

loan(CatNo, MemNo, Borrowed, Due).
A member of the library may borrow a book

A “loan” records:
the catalogue number of the book
the number of the member
the borrow date
the due date

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

21

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Database Structures

Dates are stored as structures:
date(Year, Month, Day).

E.g., date (2001, 9, 8) represents 8 September 2001
Names and addresses are all stored as character strings

Which books has a member borrowed?

has_borrowed (MemFamily, Title, CatNo) :-
memb (MemNo, name (MemFamily, _), _),
loan(CatNo, MemNo, _, _),
book (CatNo, Title, _).

Which books are overdue?

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

22

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog

Overdue Books

later(date(Y, M, D1), date(Y, M, D2)) :- D1 > D2.
later(date(Y, M1, _), date(Y, M2, _)) :— M1 > M2.
later(date(Y1, _, _), date(Y2, _, _)) :- Y1 > Y2.

later(date (2001, 12, 3), date(1999, 8, 3))7

overdue (Today, Title, CatNo, MemFamily) :-
loan(CatNo, MemNo, _, DueDate),
later(Today, DueDate),
book(CatNo, Title, _),
memb (MemNo, name (MemFamily, _), _).

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

23

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog 24

Due Date

due_date(date(Y, M1, D), date(Y, M2, D)) :-
M1 < 12,
M2 is M1 + 1.

due_date(date(Y1, 12, D), date(Y2, 1, D)) :-
Y2 is Y1 + 1.

is accepts two arguments

The right hand argument must be an evaluable arithmetic expression
The term is evaluated and unified with the left hand argument

It 1s not an assignment statement

Variables cannot be reassigned values

Arguments of comparison operators can also be arithmetic expressions

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

