
1b. NP-completeness

COMP6741: Parameterized and Exact Computation

Serge Gaspers

19T3

Contents

1 Overview 1

2 Turing Machines, P, and NP 2

3 Reductions and NP-completeness 5

4 NP-complete problems 6

5 Further Reading 8

1 Overview

Polynomial-time algorithm
Polynomial-time algorithm: There exists a constant c ∈ N such that the algorithm has (worst-case) running-time
O(nc), where n is the size of the input.

Example
Polynomial: n; n2 log2 n; n3; n20 Super-polynomial: nlog2 n; 2

√
n; 1.001n; 2n; n!

Central Question
Which computational problems have polynomial-time algorithms?

Million-dollar question
Intriguing class of problems: NP-complete problems.

NP-complete problems
It is unknown whether NP-complete problems have polynomial-time algorithms.

• A polynomial-time algorithm for one NP-complete problem would imply polynomial-time algorithms for all
problems in NP.

Gerhard Woeginger’s P vs NP page: http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Polynomial vs. NP-complete
Polynomial

• Shortest Path: Given a graph G, two vertices a and b of G, and an integer k, does G have a simple a–b-path
of length at most k?

• Euler Tour: Given a graph G, does G have a cycle that traverses each edge of G exactly once?

1

http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

• 2-CNF SAT: Given a propositional formula F in 2-CNF, is F satisfiable?A k-CNF formula is a conjunction
(AND) of clauses, and each clause is a disjunction (OR) of at most k literals, which are negated or unnegated
Boolean variables.

NP-complete

• Longest Path: Given a graph G and an integer k, does G have a simple path of length at least k?

• Hamiltonian Cycle: Given a graph G, does G have a simple cycle that visits each vertex of G?

• 3-CNF SAT: Given a propositional formula F in 3-CNF, is F satisfiable? Example: (x∨¬y ∨ z)∧ (¬x∨ z)∧
(¬y ∨ ¬z).

Overview
What’s next?

• Formally define P, NP, and NP-complete (NPC)

• (New) skill: show that a problem is NP-complete

2 Turing Machines, P, and NP

Decision problems and Encodings

<Name of Decision Problem>

Input: <What constitutes an instance>
Question: <Yes/No question>

We want to know which decision problems can be solved in polynomial time – polynomial in the size of the
input n.

• Assume a “reasonable” encoding of the input

• Many encodings are polynomial-time equivalent; i.e., one encoding can be computed from another in polyno-
mial time.

• Important exception: unary versus binary encoding of integers.

– An integer x takes dlog2 xe bits in binary and x = 2log2 x bits in unary.

Formal-language framework
We can view decision problems as languages.

• Alphabet Σ: finite set of symbols. W.l.o.g., Σ = {0, 1}

• Language L over Σ: set of strings made with symbols from Σ: L ⊆ Σ∗

• Fix an encoding of instances of a decision problem Π into Σ

• Define the language LΠ ⊆ Σ∗ such that

x ∈ LΠ ⇔ x is a Yes-instance for Π

2

Non-deterministic Turing Machine (NTM)

• input word x ∈ Σ∗ placed on an infinite tape (memory)

• read-write head initially placed on the first symbol of x

• computation step: if the machine is in state s and reads a, it can move into state s′, writing b, and moving
the head into direction D ∈ {L,R} if ((s, a), (s′, b,D)) ∈ δ.

• Q: finite, non-empty set of states

• Γ: finite, non-empty set of tape symbols

• ∈ Γ: blank symbol (the only symbol allowed to occur on the tape infinitely often)

• Σ ⊆ Γ \ {b}: set of input symbols

• q0 ∈ Q: start state

• A ⊆ Q: set of accepting (final) states

• δ ⊆ (Q \ A × Γ) × (Q × Γ × {L,R}): transition relation, where L stands for a move to the left and R for a
move to the right.

Accepted Language

Definition 1. A NTM accepts a word x ∈ Σ∗ if there exists a sequence of computation steps starting in the start
state and ending in an accept state.

Definition 2. The language accepted by an NTM is the set of words it accepts.

Video

The LEGO Turing Machine https://www.youtube.com/watch?v=cYw2ewoO6c4

Accept and Decide in polynomial time

Definition 3. A language L is accepted in polynomial time by an NTM M if

• L is accepted by M , and

• there is a constant k such that for any word x ∈ L, the NTM M accepts x in O(|x|k) computation steps.

Definition 4. A language L is decided in polynomial time by an NTM M if

• there is a constant k such that for any word x ∈ L, the NTM M accepts x in O(|x|k) computation steps, and

• there is a constant k′ such that for any word x ∈ Σ∗ \ L, on input x the NTM M halts in a non-accepting
state (Q \A) in O(|x|k′

) computation steps.

Deterministic Turing Machine

Definition 5. A Deterministic Turing Machine (DTM) is a Non-deterministic Turing Machine where the transition
relation contains at most one tuple ((s, a), (·, ·, ·)) for each s ∈ Q \A and a ∈ Γ.

The transition relation δ can be viewed as a function δ : Q \ A × Γ → Q × Γ × {L,R}. ⇒ For a given input
word x ∈ Σ∗, there is exactly one sequence of computation steps starting in the start state.

3

https://www.youtube.com/watch?v=cYw2ewoO6c4

DTM equivalents
Many computational models are polynomial-time equivalent to DTMs:

• Random Access Machine (RAM, used for algorithms in the textbook)

• variants of Turing machines (multiple tapes, infinite only in one direction, ...)

• ...

P and NP

Definition 6 (P). P = {L ⊆ Σ∗ : there is a DTM accepting L in polynomial time}

Definition 7 (NP). NP = {L ⊆ Σ∗ : there is a NTM accepting L in polynomial time}

Definition 8 (coNP). coNP = {L ⊆ Σ∗ : Σ∗ \ L ∈ NP}

coP?

Theorem 9. P = {L ⊆ Σ∗ : there is a DTM deciding L in polynomial time}

Proof sketch. Need to show: if L is accepted by a DTM M in polynomial time, then there is a DTM that decides
L in polynomial time. Idea: design a DTM M ′ that simulates M for c · nk steps, where c · nk is the running time
of M . (Note that this proof is nonconstructive: we might not know the running time of M .)

NP and certificates

Non-deterministic choices
A NTM for an NP-language L makes a polynomial number of non-deterministic choices on input x ∈ L. We can
encode these non-deterministic choices into a certificate c, which is a polynomial-length word. Now, there exists a
DTM, which, given x and c, verifies that x ∈ L in polynomial time.

Thus, L ∈ NP iff there is a DTM V and for each x ∈ L there exists a polynomial-length certificate c such that
V (x, c) = 1, but V (y, ·) = 0 for each y /∈ L.

CNF-SAT is in NP

• A CNF formula is a propositional formula in conjunctive normal form: a conjunction (AND) of clauses; each
clause is a disjunction (OR) of literals; each literal is a negated or unnegated Boolean variable.

• An assignment α : var(F) → {0, 1} satisfies a clause C if it sets a literal of C to true, and it satisfies F if it
satisfies all clauses in F .

CNF-SAT
Input: CNF formula F
Question: Does F have a satisfying assignment?

Example: (x ∨ ¬y ∨ z) ∧ (¬x ∨ z) ∧ (¬y ∨ ¬z).

Lemma 10. CNF-SAT ∈ NP.

Proof. Certificate: assignment α to the variables. Given a certificate, it can be checked in polynomial time whether
all clauses are satisfied.

4

Brute-force algorithms for problems in NP

Theorem 11. Every problem in NP can be solved in exponential time.

Proof. Let Π be an arbitrary problem in NP. [Use certificate-based definition of NP] We know that ∃ a polynomial
p and a polynomial-time verification algorithm V such that:

• for every x ∈ Π (i.e., every Yes-instance for Π) ∃ string c ∈ {0, 1}∗, |c| ≤ p(|x|), such that V (x, y) = 1, and

• for every x /∈ Π (i.e., every No-instance for Π) and every string c ∈ {0, 1}∗, V (x, c) = 0.

Now, we can prove that there exists an exponential-time algorithm for Π with input x:

• For each string c ∈ {0, 1}∗ with |c| ≤ p(|x|), evaluate V (x, c) and return Yes if V (x, c) = 1.

• Return No.

Running time: 2p(|x|) · nO(1) ⊆ 2O(2·p(|x|)) = 2O(p(|x|)), but non-constructive.

3 Reductions and NP-completeness

Polynomial-time reduction

Definition 12. A language L1 is polynomial-time reducible to a language L2, written L1 ≤P L2, if there exists a
polynomial-time computable function f : Σ∗ → Σ∗ such that for all x ∈ Σ∗,

x ∈ L1 ⇔ f(x) ∈ L2.

A polynomial time algorithm computing f is a reduction algorithm.

New polynomial-time algorithms via reductions

Lemma 13. If L1, L2 ∈ Σ∗ are languages such that L1 ≤P L2, then L2 ∈ P implies L1 ∈ P.

NP-completeness

Definition 14 (NP-hard). A language L ⊆ Σ∗ is NP-hard if

L′ ≤P L for every L′ ∈ NP.

Definition 15 (NP-complete). A language L ⊆ Σ∗ is NP-complete (in NPC) if

1. L ∈ NP, and

2. L is NP-hard.

A first NP-complete problem

Theorem 16. CNF-SAT is NP-complete.

Proved by encoding NTMs into SAT [Coo71; Lev73] and then CNF-SAT [Kar72].

Proving NP-completeness

Lemma 17. If L is a language such that L′ ≤P L for some L′ ∈ NPC, then L is NP-hard. If, in addition, L ∈ NP,
then L ∈ NPC.

Proof. For all L′′ ∈ NP, we have L′′ ≤P L′ ≤P L. By transitivity, we have L′′ ≤P L. Thus, L is NP-hard.

5

Proving NP-completeness (2)
Method to prove that a language L is NP-complete:

1. Prove L ∈ NP

2. Prove L is NP-hard.

• Select a known NP-complete language L′.

• Describe an algorithm that computes a function f mapping every instance x ∈ Σ∗ of L′ to an instance
f(x) of L.

• Prove that x ∈ L′ ⇔ f(x) ∈ L for all x ∈ Σ∗.

• Prove that the algorithm computing f runs in polynomial time.

4 NP-complete problems

3-CNF SAT is NP-hard

Theorem 18. 3-CNF SAT is NP-complete.

Proof. 3-CNF SAT is in NP, since it is a special case of CNF-SAT. To show that 3-CNF SAT is NP-hard, we give
a polynomial reduction from CNF-SAT. Let F be a CNF formula. The reduction algorithm constructs a 3-CNF
formula F ′ as follows. For each clause C in F :

• If C has at most 3 literals, then copy C into F ′.

• Otherwise, denote C = (`1 ∨ `2 ∨ · · · ∨ `k). Create k − 3 new variables y1, . . . , yk−3, and add the clauses
(`1 ∨ `2 ∨ y1), (¬y1 ∨ `3 ∨ y2), (¬y2 ∨ `4 ∨ y3), . . . , (¬yk−3 ∨ `k−1 ∨ `k).

Show that F is satisfiable ⇔ F ′ is satisfiable. Show that F ′ can be computed in polynomial time (trivial; use a
RAM).

Clique
A clique in a graph G = (V,E) is a subset of vertices S ⊆ V such that every two vertices of S are adjacent in G.

Clique

Input: Graph G, integer k
Question: Does G have a clique of size k?

Theorem 19. Clique is NP-complete.

z

y

¬x

x ¬y ¬z

x

y

(¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ ¬z) ∧ (x ∨ y)

• Clique is in NP

6

• Let F = C1 ∧ C2 ∧ . . . Ck be a 3-CNF formula

• Construct a graph G that has a clique of size k iff F is satisfiable

• For each clause Cr = (`r1 ∨ · · · ∨ `rw), 1 ≤ r ≤ k, create w new vertices vr1, . . . , v
r
w

• Add an edge between vri and vsj if

r 6= s and

`ri 6= ¬`sj where ¬¬x = x.

• Check correctness and polynomial running time

• Correctness: F has a satisfying assignment iff G has a clique of size k.

• (⇒): Let α be a sat. assignment for F . For each clause Cr, choose a literal `ri with α(`ri) = 1, and denote by
sr the corresponding vertex in G. Now, {sr : 1 ≤ r ≤ k} is a clique of size k in G since α(x) 6= α(¬x).

• (⇐): Let S be a clique of size k in G. Then, S contains exactly one vertex sr ∈ {vr1, . . . , vrw} for each
r ∈ {1, . . . , k}. Denote by lr the corresponding literal. Now, for any r, r′, it is not the case that lr = ¬lr′ .
Therefore, there is an assignment α to var(F) such that α(lr) = 1 for each r ∈ {1, . . . , k} and α satisfies F .

Vertex Cover
A vertex cover in a graph G = (V,E) is a subset of vertices S ⊆ V such that every edge of G has an endpoint

in S.

Vertex Cover
Input: Graph G, integer k
Question: Does G have a vertex cover of size k?

Theorem 20. Vertex Cover is NP-complete.

Exercise Sheet 1b.

Hamiltonian Cycle
A Hamiltonian Cycle in a graph G = (V,E) is a cycle visiting each vertex exactly once. (Alternatively, a permu-

tation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation
are adjacent.)

Hamiltonian Cycle
Input: Graph G
Question: Does G have a Hamiltonian Cycle?

Theorem 21. Hamiltonian Cycle is NP-complete.

Proof sketch. • Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.

• Let us show: Vertex Cover ≤P Hamiltonian Cycle

. • Let (G = (V,E), k) be an instance for Vertex Cover (VC).

• We will construct an equivalent instance G′ for Hamiltonian Cycle (HC).

• Intuition: Non-deterministic choices

– for VC: which vertices to select in the vertex cover

– for HC: which route the cycle takes

. • Add k vertices s1, . . . , sk to G′ (selector vertices)

• Each edge of G will be represented by a gadget (subgraph) of G′

7

• s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle going through all gadgets of G′

representing these edges.

• Attention: we need to allow for an edge to be covered by both endpoints

Gadget representing the edge {u, v} ∈ E Its states: ’covered by u’, ’covered by u and v’, ’covered by v’

5 Further Reading

• Chapter 34, NP-Completeness, in [Cor+09]

• Garey and Johnson’s influential reference book [GJ79]

8

References

[Coo71] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures”. In: Proceedings of the 3rd Annual
ACM Symposium on Theory of Computing (STOC 1971). 1971, pp. 151–158.

[Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms. 3rd ed. The MIT Press, 2009.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., 1979.

[Kar72] Richard M. Karp. “Reducibility among combinatorial problems”. In: Complexity of computer computa-
tions (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972). New York:
Plenum, 1972, pp. 85–103.

[Lev73] Leonid Levin. “Universal sequential search problems”. In: Problems of Information Transmission 9.3
(1973), pp. 265–266.

9

	Overview
	Turing Machines, P, and NP
	Reductions and NP-completeness
	NP-complete problems
	Further Reading

