1b. NP-completeness COMP6741: Parameterized and Exact Computation

Serge Gaspers

19T3

Contents

1	Overview	1
2	Turing Machines, P, and NP	2
3	Reductions and NP-completeness	5
4	NP-complete problems	6
5	Further Reading	8

1 Overview

Polynomial-time algorithm

Polynomial-time algorithm: There exists a constant $c \in \mathbb{N}$ such that the algorithm has (worst-case) running-time $O(n^c)$, where n is the size of the input.

Example

Polynomial: n; $n^2 \log_2 n$; n^3 ; n^{20} Super-polynomial: $n^{\log_2 n}$; $2^{\sqrt{n}}$; 1.001^n ; 2^n ; n!

Central Question

Which computational problems have polynomial-time algorithms?

Million-dollar question

Intriguing class of problems: NP-complete problems.

NP-complete problems

It is unknown whether NP-complete problems have polynomial-time algorithms.

• A polynomial-time algorithm for one NP-complete problem would imply polynomial-time algorithms for all problems in NP.

Gerhard Woeginger's P vs NP page: http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Polynomial vs. NP-complete

Polynomial

- SHORTEST PATH: Given a graph G, two vertices a and b of G, and an integer k, does G have a simple a-b-path of length at most k?
- EULER TOUR: Given a graph G, does G have a cycle that traverses each edge of G exactly once?

• 2-CNF SAT: Given a propositional formula F in 2-CNF, is F satisfiable? A k-CNF formula is a conjunction (AND) of clauses, and each clause is a disjunction (OR) of at most k literals, which are negated or unnegated Boolean variables.

NP-complete

- LONGEST PATH: Given a graph G and an integer k, does G have a simple path of length at least k?
- HAMILTONIAN CYCLE: Given a graph G, does G have a simple cycle that visits each vertex of G?
- 3-CNF SAT: Given a propositional formula F in 3-CNF, is F satisfiable? *Example:* $(x \lor \neg y \lor z) \land (\neg x \lor z) \land (\neg y \lor \neg z)$.

Overview

What's next?

- Formally define P, NP, and NP-complete (NPC)
- (New) skill: show that a problem is NP-complete

2 Turing Machines, P, and NP

Decision problems and Encodings

<Name of Decision Problem> Input: <What constitutes an instance> Question: <*Yes/No* question>

We want to know which decision problems can be solved in polynomial time – polynomial in the size of the input n.

- Assume a "reasonable" encoding of the input
- Many encodings are polynomial-time equivalent; i.e., one encoding can be computed from another in polynomial time.
- Important exception: unary versus binary encoding of integers.
 - An integer x takes $\lceil \log_2 x \rceil$ bits in binary and $x = 2^{\log_2 x}$ bits in unary.

Formal-language framework

We can view decision problems as languages.

- Alphabet Σ : finite set of symbols. W.l.o.g., $\Sigma = \{0, 1\}$
- Language L over Σ : set of strings made with symbols from Σ : $L \subseteq \Sigma^*$
- Fix an encoding of instances of a decision problem Π into Σ
- Define the language $L_{\Pi} \subseteq \Sigma^*$ such that

 $x \in L_{\Pi} \Leftrightarrow x$ is a Yes-instance for Π

Non-deterministic Turing Machine (NTM)

- input word $x \in \Sigma^*$ placed on an infinite tape (memory)
- read-write head initially placed on the first symbol of x
- computation step: if the machine is in state s and reads a, it can move into state s', writing b, and moving the head into direction $D \in \{L, R\}$ if $((s, a), (s', b, D)) \in \delta$.

- Q: finite, non-empty set of states
- Γ : finite, non-empty set of tape symbols
- $_\in \Gamma$: blank symbol (the only symbol allowed to occur on the tape infinitely often)
- $\Sigma \subseteq \Gamma \setminus \{b\}$: set of input symbols
- $q_0 \in Q$: start state
- $A \subseteq Q$: set of accepting (final) states
- $\delta \subseteq (Q \setminus A \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$: transition relation, where L stands for a move to the left and R for a move to the right.

Accepted Language

Definition 1. A NTM *accepts* a word $x \in \Sigma^*$ if there exists a sequence of computation steps starting in the start state and ending in an accept state.

Definition 2. The language *accepted* by an NTM is the set of words it accepts.

Video

The LEGO Turing Machine https://www.youtube.com/watch?v=cYw2ewoO6c4

Accept and Decide in polynomial time

Definition 3. A language L is accepted in polynomial time by an NTM M if

- L is accepted by M, and
- there is a constant k such that for any word $x \in L$, the NTM M accepts x in $O(|x|^k)$ computation steps.

Definition 4. A language L is decided in polynomial time by an NTM M if

- there is a constant k such that for any word $x \in L$, the NTM M accepts x in $O(|x|^k)$ computation steps, and
- there is a constant k' such that for any word $x \in \Sigma^* \setminus L$, on input x the NTM M halts in a non-accepting state $(Q \setminus A)$ in $O(|x|^{k'})$ computation steps.

Deterministic Turing Machine

Definition 5. A Deterministic Turing Machine (DTM) is a Non-deterministic Turing Machine where the transition relation contains at most one tuple $((s, a), (\cdot, \cdot, \cdot))$ for each $s \in Q \setminus A$ and $a \in \Gamma$.

The transition relation δ can be viewed as a function $\delta: Q \setminus A \times \Gamma \to Q \times \Gamma \times \{L, R\}$. \Rightarrow For a given input word $x \in \Sigma^*$, there is exactly one sequence of computation steps starting in the start state.

DTM equivalents

Many computational models are polynomial-time equivalent to DTMs:

- Random Access Machine (RAM, used for algorithms in the textbook)
- variants of Turing machines (multiple tapes, infinite only in one direction, ...)
- ...

P and NP

Definition 6 (P). $P = \{L \subseteq \Sigma^* : \text{ there is a DTM accepting } L \text{ in polynomial time}\}$

Definition 7 (NP). NP = { $L \subseteq \Sigma^*$: there is a NTM accepting L in polynomial time}

Definition 8 (coNP). $coNP = \{L \subseteq \Sigma^* : \Sigma^* \setminus L \in NP\}$

coP?

Theorem 9. $P = \{L \subseteq \Sigma^* : \text{ there is a DTM deciding } L \text{ in polynomial time}\}$

Proof sketch. Need to show: if L is accepted by a DTM M in polynomial time, then there is a DTM that decides L in polynomial time. Idea: design a DTM M' that simulates M for $c \cdot n^k$ steps, where $c \cdot n^k$ is the running time of M. (Note that this proof is nonconstructive: we might not know the running time of M.)

NP and certificates

Non-deterministic choices

A NTM for an NP-language L makes a polynomial number of non-deterministic choices on input $x \in L$. We can encode these non-deterministic choices into a *certificate* c, which is a polynomial-length word. Now, there exists a DTM, which, given x and c, verifies that $x \in L$ in polynomial time.

Thus, $L \in NP$ iff there is a DTM V and for each $x \in L$ there exists a polynomial-length certificate c such that V(x,c) = 1, but $V(y, \cdot) = 0$ for each $y \notin L$.

CNF-SAT is in NP

- A *CNF formula* is a propositional formula in conjunctive normal form: a conjunction (AND) of clauses; each clause is a disjunction (OR) of literals; each literal is a negated or unnegated Boolean variable.
- An assignment $\alpha : \operatorname{var}(F) \to \{0, 1\}$ satisfies a clause C if it sets a literal of C to true, and it satisfies F if it satisfies all clauses in F.

CNF-SAT	
Input:	CNF formula F
Question:	Does F have a satisfying assignment?

Example: $(x \lor \neg y \lor z) \land (\neg x \lor z) \land (\neg y \lor \neg z).$

Lemma 10. CNF- $SAT \in NP$.

Proof. Certificate: assignment α to the variables. Given a certificate, it can be checked in polynomial time whether all clauses are satisfied.

Brute-force algorithms for problems in NP

Theorem 11. Every problem in NP can be solved in exponential time.

Proof. Let Π be an arbitrary problem in NP. [Use certificate-based definition of NP] We know that \exists a polynomial p and a polynomial-time verification algorithm V such that:

- for every $x \in \Pi$ (i.e., every YES-instance for Π) \exists string $c \in \{0,1\}^*$, $|c| \leq p(|x|)$, such that V(x,y) = 1, and
- for every $x \notin \Pi$ (i.e., every No-instance for Π) and every string $c \in \{0, 1\}^*$, V(x, c) = 0.

Now, we can prove that there exists an exponential-time algorithm for Π with input x:

- For each string $c \in \{0,1\}^*$ with $|c| \leq p(|x|)$, evaluate V(x,c) and return YES if V(x,c) = 1.
- Return No.

Running time: $2^{p(|x|)} \cdot n^{O(1)} \subseteq 2^{O(2 \cdot p(|x|))} = 2^{O(p(|x|))}$, but non-constructive.

3 Reductions and NP-completeness

Polynomial-time reduction

Definition 12. A language L_1 is polynomial-time reducible to a language L_2 , written $L_1 \leq_P L_2$, if there exists a polynomial-time computable function $f: \Sigma^* \to \Sigma^*$ such that for all $x \in \Sigma^*$,

$$x \in L_1 \Leftrightarrow f(x) \in L_2$$

A polynomial time algorithm computing f is a reduction algorithm.

New polynomial-time algorithms via reductions

Lemma 13. If $L_1, L_2 \in \Sigma^*$ are languages such that $L_1 \leq_P L_2$, then $L_2 \in P$ implies $L_1 \in P$.

NP-completeness

Definition 14 (NP-hard). A language $L \subseteq \Sigma^*$ is NP-hard if

$$L' \leq_P L$$
 for every $L' \in NP$.

Definition 15 (NP-complete). A language $L \subseteq \Sigma^*$ is NP-complete (in NPC) if

- 1. $L \in NP$, and
- 2. L is NP-hard.

A first NP-complete problem

Theorem 16. CNF-SAT is NP-complete.

Proved by encoding NTMs into SAT [Coo71; Lev73] and then CNF-SAT [Kar72].

Proving NP-completeness

Lemma 17. If L is a language such that $L' \leq_P L$ for some $L' \in NPC$, then L is NP-hard. If, in addition, $L \in NP$, then $L \in NPC$.

Proof. For all $L'' \in NP$, we have $L'' \leq_P L \leq_P L$. By transitivity, we have $L'' \leq_P L$. Thus, L is NP-hard.

Proving NP-completeness (2)

Method to prove that a language L is NP-complete:

- 1. Prove $L \in NP$
- 2. Prove L is NP-hard.
 - Select a known NP-complete language L'.
 - Describe an algorithm that computes a function f mapping every instance $x \in \Sigma^*$ of L' to an instance f(x) of L.
 - Prove that $x \in L' \Leftrightarrow f(x) \in L$ for all $x \in \Sigma^*$.
 - Prove that the algorithm computing f runs in polynomial time.

4 NP-complete problems

3-CNF SAT is NP-hard

Theorem 18. 3-CNF SAT is NP-complete.

Proof. 3-CNF SAT is in NP, since it is a special case of CNF-SAT. To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT. Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F' as follows. For each clause C in F:

- If C has at most 3 literals, then copy C into F'.
- Otherwise, denote $C = (\ell_1 \lor \ell_2 \lor \cdots \lor \ell_k)$. Create k-3 new variables y_1, \ldots, y_{k-3} , and add the clauses $(\ell_1 \lor \ell_2 \lor y_1), (\neg y_1 \lor \ell_3 \lor y_2), (\neg y_2 \lor \ell_4 \lor y_3), \ldots, (\neg y_{k-3} \lor \ell_{k-1} \lor \ell_k)$.

Show that F is satisfiable \Leftrightarrow F' is satisfiable. Show that F' can be computed in polynomial time (trivial; use a RAM).

Clique

A clique in a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that every two vertices of S are adjacent in G.

CLIQUE Input: Graph G, integer kQuestion: Does G have a clique of size k?

Theorem 19. CLIQUE is NP-complete.

 $(\neg x \lor y \lor z) \land (x \lor \neg y \lor \neg z) \land (x \lor y)$

• CLIQUE is in NP

- Let $F = C_1 \wedge C_2 \wedge \ldots C_k$ be a 3-CNF formula
- Construct a graph G that has a clique of size k iff F is satisfiable
- For each clause $C_r = (\ell_1^r \vee \cdots \vee \ell_w^r), 1 \leq r \leq k$, create w new vertices v_1^r, \ldots, v_w^r
- Add an edge between v_i^r and v_i^s if

$$r \neq s$$
 and $\ell_i^r \neq \neg \ell_j^s$ where $\neg \neg x = x$.

- Check correctness and polynomial running time
- Correctness: F has a satisfying assignment iff G has a clique of size k.
- (\Rightarrow): Let α be a sat. assignment for F. For each clause C_r , choose a literal ℓ_i^r with $\alpha(\ell_i^r) = 1$, and denote by s^r the corresponding vertex in G. Now, $\{s^r : 1 \le r \le k\}$ is a clique of size k in G since $\alpha(x) \ne \alpha(\neg x)$.
- (\Leftarrow): Let S be a clique of size k in G. Then, S contains exactly one vertex $s_r \in \{v_1^r, \ldots, v_w^r\}$ for each $r \in \{1, \ldots, k\}$. Denote by l^r the corresponding literal. Now, for any r, r', it is not the case that $l_r = \neg l_{r'}$. Therefore, there is an assignment α to $\operatorname{var}(F)$ such that $\alpha(l_r) = 1$ for each $r \in \{1, \ldots, k\}$ and α satisfies F.

Vertex Cover

A vertex cover in a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that every edge of G has an endpoint in S.

Vertex Cover				
Input:	Graph G , integer k			
Question:	Does G have a vertex cover of size k ?			

Theorem 20. VERTEX COVER is NP-complete.

Exercise Sheet 1b.

Hamiltonian Cycle

A Hamiltonian Cycle in a graph G = (V, E) is a cycle visiting each vertex exactly once. (Alternatively, a permutation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation are adjacent.)

Hamiltonian Cycle				
Input:	Graph G			
Question:	Does G have a Hamiltonian Cycle?			

Theorem 21. HAMILTONIAN CYCLE is NP-complete.

Proof sketch. • HAMILTONIAN CYCLE is in NP: the certificate is a Hamiltonian Cycle of G.

- Let us show: VERTEX COVER \leq_P HAMILTONIAN CYCLE
- Let (G = (V, E), k) be an instance for VERTEX COVER (VC).
- We will construct an equivalent instance G' for HAMILTONIAN CYCLE (HC).
- Intuition: Non-deterministic choices
 - for VC: which vertices to select in the vertex cover
 - $-\,$ for HC: which route the cycle takes
- Add k vertices s_1, \ldots, s_k to G' (selector vertices)
- Each edge of G will be represented by a gadget (subgraph) of G'

- s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle going through all gadgets of G' representing these edges.
- Attention: we need to allow for an edge to be covered by both endpoints

Gadget representing the edge $\{u, v\} \in E$ Its states: 'covered by u', 'covered by u and v', 'covered by v'

5 Further Reading

- Chapter 34, NP-Completeness, in [Cor+09]
- Garey and Johnson's influential reference book [GJ79]

References

- [Coo71] Stephen A. Cook. "The Complexity of Theorem-Proving Procedures". In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing (STOC 1971). 1971, pp. 151–158.
- [Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. 3rd ed. The MIT Press, 2009.
- [GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.
- [Kar72] Richard M. Karp. "Reducibility among combinatorial problems". In: Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972). New York: Plenum, 1972, pp. 85–103.
- [Lev73] Leonid Levin. "Universal sequential search problems". In: Problems of Information Transmission 9.3 (1973), pp. 265–266.