Before building system

before there can be learning, reasoning, planning, explanation ...

need to be able to express knowledge

Want a precise declarative language

- declarative: believe P = hold P to be true cannot believe P without some sense of what it would mean for the world to satisfy P
- precise: need to know exactly
 - what strings of symbols count as sentences
 - what it means for a sentence to be true (but without having to specify which ones are true)

What does it mean to have a language?

- syntax
- semantics
- pragmatics

Here: language of first-order logic again: not the only choice

Logical symbols:

- Punctuation: (,), .
- Connectives: ¬, ∧, ∨, ∀, ∃, =
- Variables: x, x₁, x₂, ..., x', x", ..., y, ..., z, ...
 Fixed meaning and use like keywords in a programming language

Non-logical symbols

- Predicate symbols (like Dog)
- Function symbols (like bestFriendOf)

 Domain-dependent meaning and use
 like identifiers in a programming language
 Have <u>arity</u>: number of arguments
 arity 0 predicates: propositional symbols
 arity 0 functions: constant symbols

 Assume infinite supply of every arity

Note: not treating = as a predicate

Expressions: terms and formulas (wffs)

Terms

- 1. Every variable is a term.
- 2. If $t_1, t_2, ..., t_n$ are terms and *f* is a function of arity *n*, then $f(t_1, t_2, ..., t_n)$ is a term.

Atomic wffs

- 1. If $t_1, t_2, ..., t_n$ are terms and *P* is a predicate of arity *n*, then $P(t_1, t_2, ..., t_n)$ is an atomic wff.
- 2. If t_1 and t_2 are terms, then $(t_1=t_2)$ is an atomic wff.

Wffs

- 1. Every atomic wff is a wff
- 2. If α and β are wffs, and v is a variable, then $\neg \alpha$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $\exists v.\alpha$, $\forall v.\alpha$ are wffs.

The propositional subset:

No terms

Atomic wffs: only predicates of 0-arity

No variables and no quantifiers

$$(p \land \neg (q \lor r))$$

Occasionally add or omit (,), .

```
Use [, ] and \{,\} also.
```

Abbreviations:

 $(\alpha \supset \beta)$ for $(\neg \alpha \lor \beta)$

 $(\alpha \equiv \beta)$ for $((\alpha \supset \beta) \land (\beta \supset \alpha))$

Non-logical symbols:

Predicates: Person, Happy, OlderThan
Functions: fatherOf, successor, johnSmith

Lexical scope for variables

$$P(x) \land \exists x [P(x) \lor Q(x)]$$

free bound occurrences of variables

Sentence: wff with no free variables (closed)

Substitution: $\alpha[v/t]$ means α with all free occurrences of v replaced by term t (also α^{v}_{t}).. How to interpret sentences?

- what do sentences claim about the world?
- · what does believing one amount to?

Without answers, cannot use sentences to represent knowledge

Problem:

cannot fully specify interpretation of sentences because nonlogical symbols reach outside the language

So:

make clear dependence of interpretation on non-logical symbols

Logical interpretation:

specification of how to understand predicate and function symbols

Can be complex!

DemocraticCountry, IsABetterJudgeOfCharacterThan, favouriteIceCreamFlavourOf, puddleOfWater27 There are objects

some satisfy predicate *P*; some do not

Each interpretation settles extension of P

borderline cases ruled in separate interpretations

Each interpretation assigns to function f a mapping from objects to objects

functions always well-defined and single-valued

Main assumption:

this is all you need to know about the non-logical symbols to understand which sentences of FOL are true or false

In other words, given a specification of

- what objects there are
- which of them satisfy *P*
- what mapping is denoted by f

it will be possible to say which sentences of FOL are true and which are not

Two parts: $I = \langle D, \Phi \rangle$

D is the domain of discourse

__can be <u>any</u> set

not just formal / mathematical objects

e.g. people, tables, numbers, sentences, chunks of peanut butter, situations, the universe

Φ is an interpretation mapping

If P is a predicate symbol of arity n,

 $\Phi(P) \subseteq [D \times D \times ... \times D]$ an n-ary relation over D

Can view interpretation of predicates

in terms of characteristic function

 $\Phi(P) \in [D \times D \times ... \times D \rightarrow \{0, 1\}]$

If *f* is a function symbol of arity *n*,

 $\Phi(f) \in [D \times D \times ... \times D \rightarrow D]$

an n-ary function over D

For constants, $\Phi(c) \in D$

In terms of interpretation *I*, terms will denote elements of *D*.

```
will write element as I||t||
```

For terms with variables, denotation depends on the values of variables

will write as $I, \mu ||t||$

where $\mu \in [Variables \rightarrow D]$, called a <u>variable assignment</u>

Rules of interpretation:

1.
$$I, \mu ||v|| = \mu(v).$$

2. $I, \mu ||f(t_1, t_2, ..., t_n)|| = H(d_1, d_2, ..., d_n)$
where $H = \Phi(f)$
and $d_i = I, \mu ||t_i||$, recursively

In terms of *I*, wffs will be true for some values of the free variables and false for others

will write as $I, \mu \models \alpha$ " α is satisfied by I and μ " where $\mu \in [Variables \rightarrow D]$, as before

or $I \models \alpha$, when α is a sentence

or $I \models S$, when S is a set of sentences

(all sentences in S are true in I).

Rules of interpretation:

1. $I, \mu \models P(t_1, t_2, ..., t_n)$ iff $\langle d_1, d_2, ..., d_n \rangle \in R$ where $R = \Phi(P)$ and $d_i = I, \mu \parallel t_i \parallel$, as on previous slide 2. $I, \mu \models (t_1 = t_2)$ iff $I, \mu \parallel t_1 \parallel$ is the same as $I, \mu \parallel t_2 \parallel$ 3. $I, \mu \models \neg \alpha$ iff $I, \mu \models \alpha$ 4. $I, \mu \models (\alpha \land \beta)$ iff $I, \mu \models \alpha$ and $I, \mu \models \beta$ 5. $I, \mu \models (\alpha \lor \beta)$ iff $I, \mu \models \alpha$ or $I, \mu \models \beta$ 6. $I, \mu \models \exists v. \alpha$ iff for some $d \in D$, $I, \mu\{d; v\} \models \alpha$ 7. $I, \mu \models \forall v. \alpha$ iff for all $d \in D$, $I, \mu\{d; v\} \models \alpha$ where $\mu\{d; v\}$ is just like μ , except on v, where $\mu(v)=d$.

For propositional subset:

 $I \models p$ iff $\Phi(p) = 1$ and the rest as above

Semantic rules of interpretation tell us how to understand all wffs in terms of specification for non-logical symbols.

But some connections among sentences are independent of non-logical symbols involved.

e.g. If α is true under *I*, then so is $\neg(\beta \land \neg \alpha)$, no matter what *I* is, why α is true, what β is, ...

a function of logical symbols only

S <u>entails</u> α or α is a <u>logical consequence</u> of *S*:

 $S \models \alpha$ iff for every I, if $I \models S$ then $I \models \alpha$.

In other words: for no *I*, $I \models S \cup \{\neg \alpha\}$.

Say that $S \cup \{\neg \alpha\}$ is <u>unsatisfiable</u>

Special case: S is empty

 $|= \alpha$ iff for every *I*, *I* $|= \alpha$. Say α is <u>valid</u>.

Note: $\{\alpha_1, \alpha_2, ..., \alpha_n\} \models \alpha$ iff $\models (\alpha_1 \land \alpha_2 \land ... \land \alpha_n) \supset \alpha$ finite entailment reduces to validity We do not have access to user-intended interpretation of non-logical symbols

But, with <u>entailment</u>, we know that if *S* is true in the intended interpretation, then so is α .

If the user's view has the world satisfying S, then it must also satisfy α .

There may be other sentences true also; but α is logically guaranteed.

So what about:

Dog(fido) 🍽 Mammal(fido) ??

Not entailment!

There are logical interpretations where

 $\Phi(\text{Dog}) \not\subset \Phi(\text{Mammal})$

Key idea of KR:

include such connections $\underline{explicitly}$ in S

 $\forall x [\operatorname{Dog}(x) \supset \operatorname{Mammal}(x)]$

Get: $S \cup \{Dog(fido)\} \models Mammal(fido)$

The rest is just the details...

Knowledge Bases

KB is set of sentences

explicit statement of sentences believed (including assumed connections among non-logical symbols)

KB
$$\mid = \alpha$$

α is a further consequence of what is believed

- explicit knowledge: KB
- implicit knowledge: $\{ \alpha \mid KB \models \alpha \}$

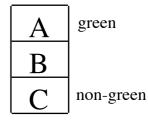
Often non trivial: explicit implicit

Example:

Three blocks stacked.

Top one is green.

Bottom one is not green.



Is there a green block directly on top of a non-green block?

 $S = \{On(a,b), On(b,c), Green(a), \neg Green(c)\}$ all that is required

$$\alpha = \exists x \exists y [Green(x) \land \neg Green(y) \land On(x,y)]$$

<u>Claim:</u> $S \models \alpha$

Proof:

Let *I* be any interpretation such that $I \models S$.

Case 1: $I \models \text{Green(b)}$. $\therefore I \models \text{Green(b)} \land \neg \text{Green(c)} \land \text{On(b,c)}$. $\therefore I \models \alpha$

Case 2: $I \models \text{Green(b)}$. $\therefore I \models \neg \text{Green(b)}$ $\therefore I \models \text{Green(a)} \land \neg \text{Green(b)} \land \text{On(a,b)}$. $\therefore I \models \alpha$

Either way, for any *I*, if $I \models S$ then $I \models \alpha$.

So $S \models \alpha$. QED

Start with (large) KB representing what is explicitly known

e.g. what the system has been told

Want to influence behaviour based on what is <u>implicit</u> in the KB (or as close as possible)

Requires reasoning

deductive inference:

process of calculating entailments of KB

i.e given KB and any $\alpha,$ determine if KB $\mid=\alpha$

Process is <u>sound</u> if whenever it produces α , then KB $\mid = \alpha$

does not allow for plausible assumptions that may be true in intended interpretation

Process is <u>complete</u> if whenever KB $\mid = \alpha$, it produces α

does not allow for process to miss some α or be unable to determine the status of α