
COMP1511 - Programming
Fundamentals

Term 2, 2019 - Lecture 11

What did we learn last week?
Assignment 1

● Everything you need to know about CS Paint!

Professionalism

● The importance of skills beyond the technical

Characters and Strings

● Using letters and words in C

What are we covering today?
Command Line Arguments

● Adding information to our program when it runs

Pointers

● Directly addressing memory

Characters and Strings Recap
Our new variable type: char

● Represents a letter
● Is also a number, an ASCII code, and we'll often use ints to represent a

character
● When used in arrays, they're referred to as strings
● Strings often end before the end of the array they're stored in
● When they do, we store a null terminator '\0' after the last character

Characters in code
#include <stdio.h>

int main (void) {
 // we're using an int to represent a single character
 int character;
 // we can assign a character value using single quotes
 character = 'a';
 // This int representing a character can be used as either
 // a character or a number
 printf("The letter %c has the ASCII value %d.\n", character,
character);
 return 0;
}

Note the use of %c in the printf will format the variable as a character

Strings in Code
Strings are arrays of type char, but they have a convenient shorthand

Both of these strings will be created with 6 elements. The letters h,e,l,l,o
and the null terminator \0

 // a string is an array of characters
 char word1[] = {'h','e','l','l','o'};
 // but we also have a convenient shorthand
 // that feels more like words
 char word2[] = "hello";

h e l l o \0

Command Line Arguments
Sometimes we want to give information to our program at the moment
when we run it

● The "Command Line" is where we type in commands into the terminal
● Arguments are another word for input parameters

● This extra text we type after the name of our program can be passed into
our program as strings

$./program extra information 1 2 3

Main functions that accept arguments
int main doesn't have to have void input parameters!

● argc will be an "argument count"
● This will be an integer of the number of words that

were typed in (including the program name)
● argv will be "argument values"
● This will be an array of strings where each string is one

of the words

int main(int argc, char* argv[]) {
}

An example of use of arguments

#include <stdio.h>

int main(int argc, char *argv[]) {
 int i = 1;
 printf("Well actually %s says there's no such thing as ", argv[0]);
 while (i < argc) {
 fputs(argv[i], stdout);
 printf(" ");
 i++;
 }
 printf("\n");
}

Arguments in argv are always strings
But what if we want to use things like numbers?

● We can read the strings in, but we might want to process them

● In this example, how do we read 1 2 3 as numbers?
● We can use a library function to convert the strings to integers!
● strtol() - "string to long integer" is from the stdlib.h

$./program extra information 1 2 3

Code for transforming strings to ints

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
 int total = 0;

 int i = 1;
 while (i < argc) {
 total += strtol(argv[i], NULL, 10);
 i++;
 }
 printf("Total is %d.\n", total);

}

Adding together the command line arguments

Memory and addressing
More detail about how memory works in our computer

● Let's start with an idea of a neighbourhood
● Each house is a piece of memory (a byte)
● Every house has a unique address that we can use to find it

Arrays work a bit like this . . .

● We've already seen indexing into arrays to find elements
● We could think of our entire computer's memory as a big array of bytes

A neighbourhood of memory
Every block of memory has an address

● The address is actually an integer
● If I have that address, it means I can find the variable wherever it is in

memory
● Just like if I have an address to a house, I'll be able to find it

105 106 107 108 109

.Somewhere in
memory:

Houses and addresses
Continuing the idea . . .

● A variable is a house
● That house is in a certain location in memory, its address
● The house contains the bits and bytes that decide what the value of the

variable is

The address is an integer

● In a 64 bit system, we'll usually use a 64 bit integer to store an address
● We can address 264 bytes of memory

Introducing Pointers
A New Variable Type - Pointers

● Pointers are memory addresses
● They are created to point at the location of variables

● If a variable was a house, the pointer would be the address of that house
● In C, the pointer is like an integer that stores a memory address
● Pointers are usually created with the intention of "aiming at" a variable

(storing a particular variable's address)

Break Time
● Pointers are variables
● Pointers can point at

variables
● uh oh . . .

Pointers in C
Pointers can be declared, but slightly differently to other variables

● A pointer is always aimed at a particular variable type
● We use a * to declare a variable as a pointer
● A pointer is most often "aimed" at a particular variable
● That means the pointer stores the address of that variable
● We use & to find the address of a variable

 int i = 100;
 // create a pointer called ip that points at
 // an integer in the location of i
 int *ip = &i;

Pointer Types
Different pointers to point at different variables

 // some variables
 int i;
 double d;
 char c;

 // some pointers to particular variables
 int *ip = &i;
 double *dp = &d;
 char *cp = &c;

Initialising Pointers
Pointers should be initialised like other variables

● Generally pointers will be initialised by pointing at a variable
● "NULL" is a #define from most standard C libraries (including stdio.h)
● If we need to initialise a pointer that is not aimed at anything, we will use

NULL

Using Pointers
If we want to look at the variable that a pointer “points at”

● We use the * on a pointer to access (dereference) the variable it points at
● Using the address analogy, this is like asking what’s inside the house at

that address

● %p in printf will print the address of a pointer

 int i = 100;
 // create a pointer called ip that points at
 // the location of i
 int *ip = &i;
 printf("The value of the variable at %p is %d", ip, *ip);

Pointers and Functions
Pointers allow us to pass around an address instead of a variable

● We can create functions that take pointers as input
● All function inputs are always passed in "by value" which means they're

copies, not the same variable
● But if I have a copy of the address of a variable, I can still find exactly the

variable I'm looking for

Variables pass "by value"

In this case, the copy of the
variable can't ever change the
value of the variable, because
it's just a copy

Main
Function

Variable Copy of
Variable

Pointers pass "by value" also

The function has a copy of the
pointer.

However, even a copy of a
pointer contains the address
of the original variable,
allowing the function to
access it.

Main
Function

Variable
Copy of
Pointer

Pointer to
Variable

Pointers and Functions in code
The following code illustrates the two examples

● A variable passed to a function is a copy and has no effect on the original
● A pointer passed to a function gives us the address of the original

// this function will have no effect!
void incrementInt(int n) {
 n = n + 1;
}
// this function will affect whatever n is pointing at
void incrementPointer(int *n) {
 *n = *n + 1;
}

Pointers and Functions
We can now do more with functions

● Pointers mean we can give multiple variables to a function
● This means one function can now change multiple variables at once

// This function is now possible!
void swap(int *n, int *m) {
 int tmp;
 tmp = *n;
 *n = *m;
 *m = tmp;
}

Pointers and Arrays
Arrays are blocks of memory

● The array variable is actually a pointer to the start of the array!
● This is why arrays as input to functions let you change the array

 int numbers[10];
 // both of these print statements
 // will print the same address!
 printf("%p\n", &numbers[0]);
 printf("%p\n", numbers);

Ok let's make a simple program
This program is called the Jumbler

● It will take some numbers as command line arguments
● It will jumble them a little, changing their order
● Then it will print them back out

Converting our Command Line Arguments
We'll read the command line arguments and convert them to ints

● Note that we're ignoring the first element of arguments because we know
that it's the name of the program and not one of our numbers

void read_args(int nums[MAX_NUMS], char *arguments[], int argCount) {
 int i = 0;
 while (i < MAX_NUMS && i < argCount - 1) {
 nums[i] = strtol(arguments[i + 1], NULL, 10);
 i++;
 }
}

Printing our numbers
This is a trivial function

● The only issue is that we might have to work with an array that isn't full
● So we use numCount to stop us early if necessary

void print_nums(int nums[MAX_NUMS], int numCount) {
 int i = 0;
 while (i < MAX_NUMS && i < numCount) {
 printf("%d ", nums[i]);
 i++;
 }
}

Using Pointers to swap variable values
A simple swap function

● This function doesn't even know whether the ints are in arrays or not
● It sees two memory locations containing ints
● and uses a temporary int variable to swap them

void swap_nums(int *num1, int *num2) {
 int temp = *num1;
 *num1 = *num2;
 *num2 = temp;
}

Jumble performs some swaps
This function just loops through and swaps a few numbers

● This is a good candidate for a function that could be changed or written
differently and just used by our main without thinking about it

void jumble(int nums[MAX_NUMS], int numCount) {
 int i = 0;
 while (i < MAX_NUMS && i < numCount) {
 int j = i * 2;
 if (j < MAX_NUMS && j < numCount) {
 swap_nums(&nums[i], &nums[j]);
 }
 i++;
 }
}

Using all the functions in the main
A nice main makes use of its functions

● It's very easy to read this main!
● It shows its steps using its function names
● There isn't much code to dig through

int main(int argc, char *argv[]) {
 int numbers[MAX_NUMS];
 read_args(numbers, argv, argc);
 jumble(numbers, argc - 1);
 print_nums(numbers, argc - 1);
 return 0;
}

What did we learn today?
Command Line Arguments

● We can take input from the terminal as extra arguments typed in after the
program name

Pointers

● Memory addresses in variables
● We can pass pointers to functions and they will have access to our

memory
● Arrays are organised like pointers

