COMP2111 Week 5

Term 1, 2019
Hoare Logic Il



Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic



Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic



L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:
@ Constant symbols: 0,1,2,...
@ Function symbols: +, %, ...
@ Predicate symbols: <, <,>/|,...



L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:
@ Constant symbols: 0,1,2,...
@ Function symbols: +, %, ...
@ Predicate symbols: <, <, >/|,...

An (arithmetic) expression is a term over this vocabulary.

A boolean expression is a predicate formula over this
vocabulary.



The language £

The language L is a simple imperative programming language
made up of four statements:
Assignment: x :=e
where x is a variable and e is an arithmetic
expression.
Sequencing: P;Q
Conditional: if b then P else Q fi
where b is a boolean expression.
While: while b do P od



Factorial in .

Example

f.=1:
k:=0;
while k < ndo
k:=k+1;
f=Ffxk
od




Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic



Hoare triple (Syntax)

{v} P{y}

Intuition:
If © holds in a state of some computational model
then v holds in the state reached after a successful execution of P.



Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic



Hoare Logic

Hoare logic consists of one axiom and four inference rules for
deriving Hoare triples.



Assignment

{wle/x]} x = e{p}

(ass)



Assignment

(ass)
{o(e)} x = e{p(x)}

Intuition:

If x has property ¢ after executing the assignment; then e must

have property ¢ before executing the assignment



Sequence

{et P{v}  {v}Q{p} (seq)
{0} P; Q{p}

Intuition:
If the postcondition of P matches the precondition of @ we can
sequentially combine the two program fragments



Conditional

{ongtP{vy  {pAn-g}Q{yv}
{p}if g then P else Q fi{vy}

(if)

Intuition:

@ When a conditional is executed, either P or @ will be
executed.

@ If ¢ is a postcondition of the conditional, then it must be a
postcondition of both branches

o Likewise, f ¢ is a precondition of the conditional, then it must
be a precondition of both branches

@ Which branch gets executed depends on g, so we can assume
g to be a precondition of P and —g to be a precondition of @
(strengthen the preconditions).



While

{pneg} P{p}
{¢} while g do P od{p A =g}

(loop)

Intuition:

@ ¢ is a loop-invariant. It must be both a pre- and
postcondition of P so that sequences of Ps can be run
together.

@ If the while loop terminates, g cannot hold.



Precondition strengthening and Postcondition
weakening

o =  A{ptP{Y} Y=
{¢'} P{y'}

(cons)

Intuition:
e ¢ — ¢: ¢ is stronger than ¢
o Stronger conditions impose more restrictions
= States which satisfy ¢’ are a subset of states which satisfy ¢
= States reached after executing P are a subset
= The postcondition will hold in the smaller set of terminal states
e ¢ — ¢': ¢ is weaker than 1)
o Weaker conditions impose fewer restrictions
= States which satisfy 1) are a subset of states which satisfy ¢’
= States reached after executing P are a subset of those which
satisfy ¢’



Example

Example

f=1

k :=0;

while —~(k = n) do
k:=k+1;
f="~Fxk

od




Example

Example

{TRUE}

f=1

k :=0;

while —~(k = n) do
k:=k+1;
fi="~Fxk

od

{f =n!}




Example (full proof)

Example

1. {1=0}f:=1{f=0}

(ass)




Example (full proof)

Example

1. {1=01}f:=1{f=0!} (ass)
2. {f=0}k:=0{f =k} (ass)




Example (full proof)

Example

1. {1=01f:=1{f =01
2. {f=0} k:=0{f =k}
3. {1=0}f:=1k:=0{f=k!}

(ass)

(ass)
(seq) : 1,2




Example (full proof)

Example
1. {1=01}f:=1{f=0!}
2. {f=0}k:=0{f =k}
3. {1=0}f:=1k:=0{f =k!}
4. {f(k+1)=(k+ 1)} k:=k+1{fk=k!}

(ass)
(ass)
(seq) : 1,2
(ass)




Example (full proof)

Example
1. {1=01}f:=1{f=0!}
2. {f=0}k:=0{f =k}
3. {1=01}f:=1k:=0{f =k!}
4. {f(k+1)=(k+ D} k:=k+1{fk =k}
5. {ftk=kl}f:=fxk{f =k}

(ass)
(ass)
(seq) : 1,2
(ass)
(ass)




Example (full proof)

Example
1. {1=01}f:=1{f=0!}
2. {f=0}k:=0{f =k}
3. {1=01}f:=1k:=0{f =k!}
4. {f(k+1)=(k+ D} k:=k+1{fk =k}
5. {ftk=kl\}f:=fxk{f =k}
6. {f(k+1)=(k+1)!'}Loopr{f =k!}

(ass)
(ass)
(seq) : 1,2
(ass)

(ass)
(seq) : 4,5




Example

N e @S @ =

Example (full proof)

{1=0}f:=1{f =0}
{f =01} k:=0{f =k!}
{1=0}f:=1,k:=0{f = k!}
{flk+1)=(k+ 1)} k:=k+1{fk =k!}
{tk =k} f:=fxk{f =k}
{f(k+1) = (k+1)!} Loop {f = k!}
(F=kW)YA=(k=n) — f(k+1)=(k+1)!




Example

o N o G > @Y=

Example (full proof)

{1=0}f:=1{f =0}
{f =01} k:=0{f =k!}
{1=0}f:=1,k:=0{f = k!}
{flk+1)=(k+ 1)} k:=k+1{fk =k!}
{tk =k} f:=fxk{f =k}
{f(k+1) = (k+1)!} Loop {f = k!}
(F=kW)YA=(k=n) — f(k+1)=(k+1)!
{(f = k') AN=(k = n)}Loop {f = k!}

(cons): 6,7




Example

© N> @

Example (full proof)

{1=0}f:=1{f =0}
{f =01} k:=0{f =k!}
{1=0}f:=1,k:=0{f = k!}
{flk+1)=(k+ 1)} k:=k+1{fk =k!}
{tk =k} f:=fxk{f =k}
{f(k+1) = (k+1)!} Loop {f = k!}
(F=kW)YA=(k=n) — f(k+1)=(k+1)!
{(f = k') AN=(k = n)} Loopr {f = k!}
{f = k!}while...od {(f = k) A (k= n)}

(cons): 6,7




Example (full proof)

Example
1. {1=0}f:=1{f=0!} (ass)
2. {f=0}k:=0{f =k} (ass)
3. {1=01}f:=1k:=0{f =k!} (seq) : 1,2
4. {f(k+1)=(k+1)1} k:=k+1{fk = k!} (ass)
5. {fk =k fi=Ffxk{f=kK} (ass)
6. {f(k+1)=(k+1)!}Loop{f = k!} (seq) : 4,5
7. (f=k)A=(k=n) — f(k+1)=(k+1)! math
8. {(f =k!)AN—=(k=n)}Loopr{f = k!} (cons): 6,7
9. {f=kl}while...od{(f = k!)A (k= n)} (loop): 8
10. {1 =0!} FACTORIAL{(f = k!) A (k=n)} (seq)




Example (full proof)

Example

1. {1=0}f:=1{f=0!}

2. {f=0} k:=0{f =k}

3. {1=01}f:=1k:=0{f =k!}

4. {f(k+1)=(k+ 1)} k:=k+1{fk=k!}
5. {ftk=kl} f:=f«k{f =k}

6. {f(k+1)=(k+1)}Loopr{f =k!}

7. (f=k)A=(k=n) — f(k+1)=(k+1)!
8. {(f=k!)A—=(k=n)}Loopr{f = k!}

9. {f=kl}while...od{(f = k!)A (k= n)}
10. {1 =0!}FacTorIAL{(f = k!) A (k = n)}
11. TrUE — (1 =0!)

12. ((f=kY)YA(k=n))—f=n!

(ass)

(ass)
(seq) : 1,2
(ass)

(ass)
(seq) : 4,5
math
(cons): 6,7
(loop): 8
(seq)
math
math




Example (full proof)

Example
1. {1=0}f:=1{f=01}
2. {f=0}k:=0{f =k!}
3. {1=01}f:=1k:=0{f =k!}
4. {f(k+1)=(k+ 1)} k:=k+1{fk=k!}
5. {ftk=kl}f:=f*k{f=k!}
6. {f(k+1)=(k+1)}Loopr{f =k!}
7. (F=k)A-(k=n) — f(k+1)=(k+1)!
8. {(f =k!)AN—=(k=n)}Loopr{f = k!}
9. {f=kl}while...od{(f =k!)A(k=n)}
10. {1 =0!}FacTorIAL{(f = k!) A (k = n)}
11. TrRUE — (1=0!)
12. (F=kY)A(k=n))—f=n!
13. {TRUE}FACTORIAL {f = n!}

(ass)

(ass)
(seq) : 1,2
(ass)

(ass)
(seq) : 4,5
math
(cons): 6,7
(loop): 8
(seq)
math
math
(cons):
10,11,12




Example

Example (proof outline)

{TRUE}




Example

Example (proof outline)

{TRUE}
{1=01}




Example

Example (proof outline)

{TRUE}
{1=01}
{f =01}




Example

X Th
e =

Example (proof outline)

{TRUE}
{1=0!}
{f =0}
{f = kI}




Example (proof outline)

Example

f.=1,
k :=0;
while —(k = n) do

{TRUE}
{1=0!}
{f =0}
{f = kI}
{(f = k) A=(k = n)}




Example (proof outline)

Example

f.=1,
k :=0;
while —(k = n) do

{TRUE}
{1=0!}
{f =0}
{f = kI}
{(f = k) A=(k = n)}
{f(k+1)=(k+ 1)}




Example (proof outline)

Example

f.=1,
k :=0;
while —(k = n) do

k= k+1;

{TRUE}
{1=0!}
{f =0}
{f = kI}
{(f = k) A=(k = n)}
{f(k+1)=(k+ 1)}
{fk = k!}




Example (proof outline)

Example

f.=1,
k :=0;
while —(k = n) do

k= k+1;
f=Ffxk

{TRUE}

{1=0!}

{f =0}

{f = kI}

{(f = k) A=(k = n)}
{f(k+1)=(k+ 1)}
{fk = k!}

{f =k}




Example (proof outline)

Example

fi=1;
k :=0;
while —(k = n) do

k:=k+1;
f=Ffxk
od

{TRUE}

{1=0'}

{f =0}

{f = kI}

{(f = k) A=(k = n)}
{f(k+1)=(k+ 1)}
{fk = k!}

{f =k}

{(F = k) A (k= n)}




Example (proof outline)

Example

fi=1;
k :=0;
while —(k = n) do

k:=k+1;
f=Ffxk
od

{TRUE}

{1=01}

{f =0}

{f = kI}

{(f = k) A=(k = n)}
{f(k+1)=(k+ 1)}
{fk = k!}

{f =k}

{(f = k) A (k= n)}
{f =nl}




Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic



Recall

If R and S are binary relations, then the relational composition
of R and S, R; S is the relation:

R;S :={(a,c) : 3b such that (a,b) € R and (b,c) € S}

If RC A X B is a relation, and X C A, then the image of X
under R, R(X) is the subset of B defined as:

R(X) :={b e B : Ja inX such that (a, b) € R}.



Informal semantics

Hoare logic gives a proof of {¢} P {¢}, thatis: F {¢} P {v}
(axiomatic semantics)

How do we determine when {¢} P {¢} is valid, that is:

= {w} P{y}?



Informal semantics

Hoare logic gives a proof of {¢} P {¢}, thatis: F {¢} P {v}
(axiomatic semantics)

How do we determine when {¢} P {¢} is valid, that is:

= {w} P{y}?

If © holds in a state of some computational model
then ¢ holds in the state reached after a successful execution of P.



Informal semantics: Programs

What is a program?



Informal semantics: Programs

What is a program?

A

function mapping system states to system states



Informal semantics: Programs

What is a program?

A partial function mapping system states to system states



Informal semantics: Programs

What is a program?

A relation between system states



Informal semantics: States

What is a state of a computational model?



Informal semantics: States
What is a state of a computational model?

Two approaches:
@ Concrete: from a physical perspective

@ Abstract: from a mathematical perspective



Informal semantics: States

What is a state of a computational model?

Two approaches:
@ Concrete: from a physical perspective

o States are memory configurations, register contents, etc.
o Store of variables and the values associated with them

@ Abstract: from a mathematical perspective



Informal semantics: States

What is a state of a computational model?

Two approaches:
@ Concrete: from a physical perspective

o States are memory configurations, register contents, etc.
o Store of variables and the values associated with them

@ Abstract: from a mathematical perspective

e The pre-/postcondition predicates hold in a state
= States are logical interpretations (Model + Environment)



Informal semantics: States

What is a state of a computational model?

Two approaches:
@ Concrete: from a physical perspective

o States are memory configurations, register contents, etc.
o Store of variables and the values associated with them
@ Abstract: from a mathematical perspective
e The pre-/postcondition predicates hold in a state
= States are logical interpretations (Model + Environment)
o There is only one model of interest: standard interpretations of
arithmetical symbols



Informal semantics: States

What is a state of a computational model?

Two approaches:
@ Concrete: from a physical perspective

o States are memory configurations, register contents, etc.
o Store of variables and the values associated with them
@ Abstract: from a mathematical perspective

e The pre-/postcondition predicates hold in a state

= States are logical interpretations (Model + Environment)
o There is only one model of interest: standard interpretations of

arithmetical symbols
= States are fully determined by environments
= States are functions that map variables to values



Informal semantics: States

x<+<0
y<+0
z<+0

x<+1
y<+1
z<+1

x <+ 0
y<+1
z<+ 2

x <+ 1
y<+1
z4+ 2

State space (ENV)

x<+0
y+1

x <3
y<+<2
z<+1

X 2
y<+<2
z<+ 2




Informal semantics: States and Programs

Vs

State space (ENV)

x <+ 0

x <3
y<+<2

/z<_1
x<+1 x+1

X 2
y<+<2
z<+ 2

x<+0
y+1

N




Informal semantics:

States and Programs




Semantics for L

An environment or state is a function from variables to numeric
values. We denote by ENV the set of all environments.

NB

An environment, 1), assigns a numeric value [e]" to all expressions
e, and a boolean value [b]" to all boolean expressions b.




Semantics for L

An environment or state is a function from variables to numeric
values. We denote by ENV the set of all environments.

NB

An environment, 1), assigns a numeric value [e]" to all expressions
e, and a boolean value [b]" to all boolean expressions b.

Given a program P of L, we define [P] to be a binary relation on
ENV in the following manner...



(n,1') € [x:=e]

Assignment

if, and only if 7' =[x — [e]"]



Assignment: [z := 2]

State space (ENV)

| x <+ 0
y+0 x 3
z+0
y <2
z+1
x+— 1 x<+1
y+l|—>|y+1
y !l Y X2
y<+2
z<+2
x<+0

}Z/:; \xeo
y+1

z+0




Sequencing

[P: Q1 =PI 1]

where, on the RHS,

; is relational composition.



Conditional, first attempt

[if b then P else Q fi] = {

[P]
[@]

if [b]" = true
otherwise.



Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of ENv:

(b) ={n : [b]" = true}

This can be extended to a binary relation (i.e. a program):

(6] ={(n.n) : ne(b)}



Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of ENv:
(b) = {n : [b]" = true}

This can be extended to a binary relation (i.e. a program):
[6] = {(n,n) = n e (b)}

Intuitively, b corresponds to the program

if b then skip else L fi



Conditional, better attempt

[if b then P else Q fi] = [b; P] U [-b; Q]



While

while b do P od

@ Do 0 or more executions of P while b holds

@ Terminate when b does not hold



While

while b do P od

@ Do 0 or more executions of (b; P)

@ Terminate with an execution of —=b



While

while b do P od

@ Do 0 or more executions of (b; P)

@ Terminate with an execution of —b

How to do “0 or more” executions of (b; P)?



Transitive closure

Given a binary relation R C E x E, the transitive closure of R, R*
is defined to be the limit of the sequence

ROUR'UR?...

where
@ RO = A, the diagonal relation
e Rl =R"R
NB
@ R* is the smallest transitive relation which contains R

@ Related to the Kleene star operation seen in languages: ¥*




Transitive closure

Given a binary relation R C E x E, the transitive closure of R, R*
is defined to be the limit of the sequence

ROUR'UR?...

where
@ RO = A, the diagonal relation
e RM1=R"R

NB
@ R* is the smallest transitive relation which contains R

@ Related to the Kleene star operation seen in languages: ¥*

Technically, R* is the least-fixed point of f(X)=XUX;R



While

[while b do P od] = [b; P]*; [b]

@ Do 0 or more executions of (b; P)

@ Conclude with an execution of —b



Validity

A Hoare triple is valid, written |= {p} P {¢} if

[P1(e)) < (¥).

That is, the relational image under [P] of the set of states where
© holds is contained in the set of states where v holds.



Validity




Validity




Validity




Validity




Validity

[F]




