
COMP2111 Week 5
Term 1, 2019
Hoare Logic II

1



Summary

L: A simple imperative programming language

Hoare triples (SYNTAX)

Hoare logic (PROOF)

Semantics for Hoare logic

2



Summary

L: A simple imperative programming language

Hoare triples (SYNTAX)

Hoare logic (PROOF)

Semantics for Hoare logic

3



L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:

Constant symbols: 0, 1, 2, . . .

Function symbols: +, ∗, . . .
Predicate symbols: <,≤,≥, |, . . .

An (arithmetic) expression is a term over this vocabulary.

A boolean expression is a predicate formula over this
vocabulary.

4



L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:

Constant symbols: 0, 1, 2, . . .

Function symbols: +, ∗, . . .
Predicate symbols: <,≤,≥, |, . . .

An (arithmetic) expression is a term over this vocabulary.

A boolean expression is a predicate formula over this
vocabulary.

5



The language L

The language L is a simple imperative programming language
made up of four statements:

Assignment: x :=e
where x is a variable and e is an arithmetic
expression.

Sequencing: P;Q

Conditional: if b then P else Q fi
where b is a boolean expression.

While: while b do P od

6



Factorial in L

Example

f := 1;
k := 0;
while k < n do
k := k + 1;
f := f ∗ k

od

7



Summary

L: A simple imperative programming language

Hoare triples (SYNTAX)

Hoare logic (PROOF)

Semantics for Hoare logic

8



Hoare triple (Syntax)

{ϕ}P {ψ}

Intuition:
If ϕ holds in a state of some computational model
then ψ holds in the state reached after a successful execution of P.

9



Summary

L: A simple imperative programming language

Hoare triples (SYNTAX)

Hoare logic (PROOF)

Semantics for Hoare logic

10



Hoare Logic

Hoare logic consists of one axiom and four inference rules for
deriving Hoare triples.

11



Assignment

(ass)
{ϕ[e/x ]} x := e {ϕ}

Intuition:
If x has property ϕ after executing the assignment; then e must
have property ϕ before executing the assignment

12



Assignment

(ass)
{ϕ(e)} x := e {ϕ(x)}

Intuition:
If x has property ϕ after executing the assignment; then e must
have property ϕ before executing the assignment

13



Sequence

{ϕ}P {ψ} {ψ}Q {ρ}
(seq)

{ϕ}P;Q {ρ}

Intuition:
If the postcondition of P matches the precondition of Q we can
sequentially combine the two program fragments

14



Conditional

{ϕ ∧ g}P {ψ} {ϕ ∧ ¬g}Q {ψ}
(if)

{ϕ} if g then P else Q fi {ψ}

Intuition:

When a conditional is executed, either P or Q will be
executed.

If ψ is a postcondition of the conditional, then it must be a
postcondition of both branches

Likewise, f ϕ is a precondition of the conditional, then it must
be a precondition of both branches

Which branch gets executed depends on g , so we can assume
g to be a precondition of P and ¬g to be a precondition of Q
(strengthen the preconditions).

15



While

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

Intuition:

ϕ is a loop-invariant. It must be both a pre- and
postcondition of P so that sequences of Ps can be run
together.

If the while loop terminates, g cannot hold.

16



Precondition strengthening and Postcondition
weakening

ϕ′ → ϕ {ϕ}P {ψ} ψ → ψ′
(cons)

{ϕ′}P {ψ′}

Intuition:

ϕ′ → ϕ: ϕ′ is stronger than ϕ

Stronger conditions impose more restrictions
⇒ States which satisfy ϕ′ are a subset of states which satisfy ϕ
⇒ States reached after executing P are a subset
⇒ The postcondition will hold in the smaller set of terminal states

ψ → ψ′: ψ′ is weaker than ψ

Weaker conditions impose fewer restrictions
⇒ States which satisfy ψ are a subset of states which satisfy ψ′

⇒ States reached after executing P are a subset of those which
satisfy ψ′

17



Example

Example

{True}
f := 1;
k := 0;
while ¬(k = n) do

k := k + 1;
f := f ∗ k

od
{f = n!}

18



Example

Example

{True}
f := 1;
k := 0;
while ¬(k = n) do

k := k + 1;
f := f ∗ k

od
{f = n!}

19



Example (full proof)
Example

1. {1 = 0!} f := 1 {f = 0!} (ass)
2. {f = 0!} k := 0 {f = k!} (ass)
3. {1 = 0!} f := 1; k := 0 {f = k!} (seq) : 1, 2
4. {f (k + 1) = (k + 1)!} k := k + 1 {fk = k!} (ass)
5. {fk = k!} f := f ∗ k {f = k!} (ass)
6. {f (k + 1) = (k + 1)!}Loop {f = k!} (seq) : 4, 5
7. (f = k!) ∧ ¬(k = n) → f (k + 1) = (k + 1)! math
8. {(f = k!) ∧ ¬(k = n)}Loop {f = k!} (cons): 6,7
9. {f = k!}while . . . od {(f = k!) ∧ (k = n)} (loop): 8
10. {1 = 0!}Factorial {(f = k!) ∧ (k = n)} (seq)
11. True→ (1 = 0!) math
12. ((f = k!) ∧ (k = n))→ f = n! math
13. {True}Factorial {f = n!} (cons):

10,11,12

20



Example (full proof)
Example

1. {1 = 0!} f := 1 {f = 0!} (ass)
2. {f = 0!} k := 0 {f = k!} (ass)
3. {1 = 0!} f := 1; k := 0 {f = k!} (seq) : 1, 2
4. {f (k + 1) = (k + 1)!} k := k + 1 {fk = k!} (ass)
5. {fk = k!} f := f ∗ k {f = k!} (ass)
6. {f (k + 1) = (k + 1)!}Loop {f = k!} (seq) : 4, 5
7. (f = k!) ∧ ¬(k = n) → f (k + 1) = (k + 1)! math
8. {(f = k!) ∧ ¬(k = n)}Loop {f = k!} (cons): 6,7
9. {f = k!}while . . . od {(f = k!) ∧ (k = n)} (loop): 8
10. {1 = 0!}Factorial {(f = k!) ∧ (k = n)} (seq)
11. True→ (1 = 0!) math
12. ((f = k!) ∧ (k = n))→ f = n! math
13. {True}Factorial {f = n!} (cons):

10,11,12

21



Example (full proof)
Example

1. {1 = 0!} f := 1 {f = 0!} (ass)
2. {f = 0!} k := 0 {f = k!} (ass)
3. {1 = 0!} f := 1; k := 0 {f = k!} (seq) : 1, 2
4. {f (k + 1) = (k + 1)!} k := k + 1 {fk = k!} (ass)
5. {fk = k!} f := f ∗ k {f = k!} (ass)
6. {f (k + 1) = (k + 1)!}Loop {f = k!} (seq) : 4, 5
7. (f = k!) ∧ ¬(k = n) → f (k + 1) = (k + 1)! math
8. {(f = k!) ∧ ¬(k = n)}Loop {f = k!} (cons): 6,7
9. {f = k!}while . . . od {(f = k!) ∧ (k = n)} (loop): 8
10. {1 = 0!}Factorial {(f = k!) ∧ (k = n)} (seq)
11. True→ (1 = 0!) math
12. ((f = k!) ∧ (k = n))→ f = n! math
13. {True}Factorial {f = n!} (cons):

10,11,12

22



Example (full proof)
Example

1. {1 = 0!} f := 1 {f = 0!} (ass)
2. {f = 0!} k := 0 {f = k!} (ass)
3. {1 = 0!} f := 1; k := 0 {f = k!} (seq) : 1, 2
4. {f (k + 1) = (k + 1)!} k := k + 1 {fk = k!} (ass)
5. {fk = k!} f := f ∗ k {f = k!} (ass)
6. {f (k + 1) = (k + 1)!}Loop {f = k!} (seq) : 4, 5
7. (f = k!) ∧ ¬(k = n) → f (k + 1) = (k + 1)! math
8. {(f = k!) ∧ ¬(k = n)}Loop {f = k!} (cons): 6,7
9. {f = k!}while . . . od {(f = k!) ∧ (k = n)} (loop): 8
10. {1 = 0!}Factorial {(f = k!) ∧ (k = n)} (seq)
11. True→ (1 = 0!) math
12. ((f = k!) ∧ (k = n))→ f = n! math
13. {True}Factorial {f = n!} (cons):

10,11,12

23



Example (full proof)
Example

1. {1 = 0!} f := 1 {f = 0!} (ass)
2. {f = 0!} k := 0 {f = k!} (ass)
3. {1 = 0!} f := 1; k := 0 {f = k!} (seq) : 1, 2
4. {f (k + 1) = (k + 1)!} k := k + 1 {fk = k!} (ass)
5. {fk = k!} f := f ∗ k {f = k!} (ass)
6. {f (k + 1) = (k + 1)!}Loop {f = k!} (seq) : 4, 5
7. (f = k!) ∧ ¬(k = n) → f (k + 1) = (k + 1)! math
8. {(f = k!) ∧ ¬(k = n)}Loop {f = k!} (cons): 6,7
9. {f = k!}while . . . od {(f = k!) ∧ (k = n)} (loop): 8
10. {1 = 0!}Factorial {(f = k!) ∧ (k = n)} (seq)
11. True→ (1 = 0!) math
12. ((f = k!) ∧ (k = n))→ f = n! math
13. {True}Factorial {f = n!} (cons):

10,11,12

24



Example (full proof)
Example

1. {1 = 0!} f := 1 {f = 0!} (ass)
2. {f = 0!} k := 0 {f = k!} (ass)
3. {1 = 0!} f := 1; k := 0 {f = k!} (seq) : 1, 2
4. {f (k + 1) = (k + 1)!} k := k + 1 {fk = k!} (ass)
5. {fk = k!} f := f ∗ k {f = k!} (ass)
6. {f (k + 1) = (k + 1)!}Loop {f = k!} (seq) : 4, 5
7. (f = k!) ∧ ¬(k = n) → f (k + 1) = (k + 1)! math
8. {(f = k!) ∧ ¬(k = n)}Loop {f = k!} (cons): 6,7
9. {f = k!}while . . . od {(f = k!) ∧ (k = n)} (loop): 8
10. {1 = 0!}Factorial {(f = k!) ∧ (k = n)} (seq)
11. True→ (1 = 0!) math
12. ((f = k!) ∧ (k = n))→ f = n! math
13. {True}Factorial {f = n!} (cons):

10,11,12

25



Example (full proof)
Example

1. {1 = 0!} f := 1 {f = 0!} (ass)
2. {f = 0!} k := 0 {f = k!} (ass)
3. {1 = 0!} f := 1; k := 0 {f = k!} (seq) : 1, 2
4. {f (k + 1) = (k + 1)!} k := k + 1 {fk = k!} (ass)
5. {fk = k!} f := f ∗ k {f = k!} (ass)
6. {f (k + 1) = (k + 1)!}Loop {f = k!} (seq) : 4, 5
7. (f = k!) ∧ ¬(k = n) → f (k + 1) = (k + 1)! math
8. {(f = k!) ∧ ¬(k = n)}Loop {f = k!} (cons): 6,7
9. {f = k!}while . . . od {(f = k!) ∧ (k = n)} (loop): 8
10. {1 = 0!}Factorial {(f = k!) ∧ (k = n)} (seq)
11. True→ (1 = 0!) math
12. ((f = k!) ∧ (k = n))→ f = n! math
13. {True}Factorial {f = n!} (cons):

10,11,12

26



Example (full proof)
Example

1. {1 = 0!} f := 1 {f = 0!} (ass)
2. {f = 0!} k := 0 {f = k!} (ass)
3. {1 = 0!} f := 1; k := 0 {f = k!} (seq) : 1, 2
4. {f (k + 1) = (k + 1)!} k := k + 1 {fk = k!} (ass)
5. {fk = k!} f := f ∗ k {f = k!} (ass)
6. {f (k + 1) = (k + 1)!}Loop {f = k!} (seq) : 4, 5
7. (f = k!) ∧ ¬(k = n) → f (k + 1) = (k + 1)! math
8. {(f = k!) ∧ ¬(k = n)}Loop {f = k!} (cons): 6,7
9. {f = k!}while . . . od {(f = k!) ∧ (k = n)} (loop): 8
10. {1 = 0!}Factorial {(f = k!) ∧ (k = n)} (seq)
11. True→ (1 = 0!) math
12. ((f = k!) ∧ (k = n))→ f = n! math
13. {True}Factorial {f = n!} (cons):

10,11,12

27



Example (full proof)
Example

1. {1 = 0!} f := 1 {f = 0!} (ass)
2. {f = 0!} k := 0 {f = k!} (ass)
3. {1 = 0!} f := 1; k := 0 {f = k!} (seq) : 1, 2
4. {f (k + 1) = (k + 1)!} k := k + 1 {fk = k!} (ass)
5. {fk = k!} f := f ∗ k {f = k!} (ass)
6. {f (k + 1) = (k + 1)!}Loop {f = k!} (seq) : 4, 5
7. (f = k!) ∧ ¬(k = n) → f (k + 1) = (k + 1)! math
8. {(f = k!) ∧ ¬(k = n)}Loop {f = k!} (cons): 6,7
9. {f = k!}while . . . od {(f = k!) ∧ (k = n)} (loop): 8
10. {1 = 0!}Factorial {(f = k!) ∧ (k = n)} (seq)
11. True→ (1 = 0!) math
12. ((f = k!) ∧ (k = n))→ f = n! math
13. {True}Factorial {f = n!} (cons):

10,11,12

28



Example (full proof)
Example

1. {1 = 0!} f := 1 {f = 0!} (ass)
2. {f = 0!} k := 0 {f = k!} (ass)
3. {1 = 0!} f := 1; k := 0 {f = k!} (seq) : 1, 2
4. {f (k + 1) = (k + 1)!} k := k + 1 {fk = k!} (ass)
5. {fk = k!} f := f ∗ k {f = k!} (ass)
6. {f (k + 1) = (k + 1)!}Loop {f = k!} (seq) : 4, 5
7. (f = k!) ∧ ¬(k = n) → f (k + 1) = (k + 1)! math
8. {(f = k!) ∧ ¬(k = n)}Loop {f = k!} (cons): 6,7
9. {f = k!}while . . . od {(f = k!) ∧ (k = n)} (loop): 8
10. {1 = 0!}Factorial {(f = k!) ∧ (k = n)} (seq)
11. True→ (1 = 0!) math
12. ((f = k!) ∧ (k = n))→ f = n! math
13. {True}Factorial {f = n!} (cons):

10,11,12

29



Example (full proof)
Example

1. {1 = 0!} f := 1 {f = 0!} (ass)
2. {f = 0!} k := 0 {f = k!} (ass)
3. {1 = 0!} f := 1; k := 0 {f = k!} (seq) : 1, 2
4. {f (k + 1) = (k + 1)!} k := k + 1 {fk = k!} (ass)
5. {fk = k!} f := f ∗ k {f = k!} (ass)
6. {f (k + 1) = (k + 1)!}Loop {f = k!} (seq) : 4, 5
7. (f = k!) ∧ ¬(k = n) → f (k + 1) = (k + 1)! math
8. {(f = k!) ∧ ¬(k = n)}Loop {f = k!} (cons): 6,7
9. {f = k!}while . . . od {(f = k!) ∧ (k = n)} (loop): 8
10. {1 = 0!}Factorial {(f = k!) ∧ (k = n)} (seq)
11. True→ (1 = 0!) math
12. ((f = k!) ∧ (k = n))→ f = n! math
13. {True}Factorial {f = n!} (cons):

10,11,12

30



Example (full proof)
Example

1. {1 = 0!} f := 1 {f = 0!} (ass)
2. {f = 0!} k := 0 {f = k!} (ass)
3. {1 = 0!} f := 1; k := 0 {f = k!} (seq) : 1, 2
4. {f (k + 1) = (k + 1)!} k := k + 1 {fk = k!} (ass)
5. {fk = k!} f := f ∗ k {f = k!} (ass)
6. {f (k + 1) = (k + 1)!}Loop {f = k!} (seq) : 4, 5
7. (f = k!) ∧ ¬(k = n) → f (k + 1) = (k + 1)! math
8. {(f = k!) ∧ ¬(k = n)}Loop {f = k!} (cons): 6,7
9. {f = k!}while . . . od {(f = k!) ∧ (k = n)} (loop): 8
10. {1 = 0!}Factorial {(f = k!) ∧ (k = n)} (seq)
11. True→ (1 = 0!) math
12. ((f = k!) ∧ (k = n))→ f = n! math
13. {True}Factorial {f = n!} (cons):

10,11,12

31



Example (proof outline)

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

32



Example (proof outline)

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

33



Example (proof outline)

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

34



Example (proof outline)

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

35



Example (proof outline)

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

36



Example (proof outline)

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

37



Example (proof outline)

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

38



Example (proof outline)

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

39



Example (proof outline)

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

40



Example (proof outline)

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}

41



Summary

L: A simple imperative programming language

Hoare triples (SYNTAX)

Hoare logic (PROOF)

Semantics for Hoare logic

42



Recall

If R and S are binary relations, then the relational composition
of R and S , R; S is the relation:

R;S := {(a, c) : ∃b such that (a, b) ∈ R and (b, c) ∈ S}

If R ⊆ A× B is a relation, and X ⊆ A, then the image of X
under R, R(X ) is the subset of B defined as:

R(X ) := {b ∈ B : ∃a inX such that (a, b) ∈ R}.

43



Informal semantics

Hoare logic gives a proof of {ϕ}P {ψ}, that is: ` {ϕ}P {ψ}
(axiomatic semantics)

How do we determine when {ϕ}P {ψ} is valid, that is:
|= {ϕ}P {ψ}?

If ϕ holds in a state of some computational model
then ψ holds in the state reached after a successful execution of P.

44



Informal semantics

Hoare logic gives a proof of {ϕ}P {ψ}, that is: ` {ϕ}P {ψ}
(axiomatic semantics)

How do we determine when {ϕ}P {ψ} is valid, that is:
|= {ϕ}P {ψ}?

If ϕ holds in a state of some computational model
then ψ holds in the state reached after a successful execution of P.

45



Informal semantics: Programs

What is a program?

A partial function mapping system states to system states

46



Informal semantics: Programs

What is a program?

A partial function mapping system states to system states

47



Informal semantics: Programs

What is a program?

A partial function mapping system states to system states

48



Informal semantics: Programs

What is a program?

A relation between system states

49



Informal semantics: States

What is a state of a computational model?

Two approaches:

Concrete: from a physical perspective

States are memory configurations, register contents, etc.
Store of variables and the values associated with them

Abstract: from a mathematical perspective

The pre-/postcondition predicates hold in a state
⇒ States are logical interpretations (Model + Environment)

There is only one model of interest: standard interpretations of
arithmetical symbols

⇒ States are fully determined by environments
⇒ States are functions that map variables to values

50



Informal semantics: States

What is a state of a computational model?

Two approaches:

Concrete: from a physical perspective

States are memory configurations, register contents, etc.
Store of variables and the values associated with them

Abstract: from a mathematical perspective

The pre-/postcondition predicates hold in a state
⇒ States are logical interpretations (Model + Environment)

There is only one model of interest: standard interpretations of
arithmetical symbols

⇒ States are fully determined by environments
⇒ States are functions that map variables to values

51



Informal semantics: States

What is a state of a computational model?

Two approaches:

Concrete: from a physical perspective

States are memory configurations, register contents, etc.
Store of variables and the values associated with them

Abstract: from a mathematical perspective

The pre-/postcondition predicates hold in a state
⇒ States are logical interpretations (Model + Environment)

There is only one model of interest: standard interpretations of
arithmetical symbols

⇒ States are fully determined by environments
⇒ States are functions that map variables to values

52



Informal semantics: States

What is a state of a computational model?

Two approaches:

Concrete: from a physical perspective

States are memory configurations, register contents, etc.
Store of variables and the values associated with them

Abstract: from a mathematical perspective

The pre-/postcondition predicates hold in a state
⇒ States are logical interpretations (Model + Environment)

There is only one model of interest: standard interpretations of
arithmetical symbols

⇒ States are fully determined by environments
⇒ States are functions that map variables to values

53



Informal semantics: States

What is a state of a computational model?

Two approaches:

Concrete: from a physical perspective

States are memory configurations, register contents, etc.
Store of variables and the values associated with them

Abstract: from a mathematical perspective

The pre-/postcondition predicates hold in a state
⇒ States are logical interpretations (Model + Environment)

There is only one model of interest: standard interpretations of
arithmetical symbols

⇒ States are fully determined by environments
⇒ States are functions that map variables to values

54



Informal semantics: States

What is a state of a computational model?

Two approaches:

Concrete: from a physical perspective

States are memory configurations, register contents, etc.
Store of variables and the values associated with them

Abstract: from a mathematical perspective

The pre-/postcondition predicates hold in a state
⇒ States are logical interpretations (Model + Environment)

There is only one model of interest: standard interpretations of
arithmetical symbols

⇒ States are fully determined by environments
⇒ States are functions that map variables to values

55



Informal semantics: States and Programs

State space (Env)

x ← 1
y ← 1
z ← 2

x ← 0
y ← 0
z ← 0

x ← 0
y ← 1
z ← 2

x ← 3
y ← 2
z ← 1

x ← 0
y ← 1
z ← 0

x ← 1
y ← 1
z ← 1

x ← 2
y ← 2
z ← 2

56



Informal semantics: States and Programs

State space (Env)

x ← 1
y ← 1
z ← 2

x ← 0
y ← 0
z ← 0

x ← 0
y ← 1
z ← 2

x ← 3
y ← 2
z ← 1

x ← 0
y ← 1
z ← 0

x ← 1
y ← 1
z ← 1

x ← 2
y ← 2
z ← 2

57



Informal semantics: States and Programs

58



Semantics for L

An environment or state is a function from variables to numeric
values. We denote by Env the set of all environments.

NB

An environment, η, assigns a numeric value [[e]]η to all expressions
e, and a boolean value [[b]]η to all boolean expressions b.

Given a program P of L, we define [[P]] to be a binary relation on
Env in the following manner...

59



Semantics for L

An environment or state is a function from variables to numeric
values. We denote by Env the set of all environments.

NB

An environment, η, assigns a numeric value [[e]]η to all expressions
e, and a boolean value [[b]]η to all boolean expressions b.

Given a program P of L, we define [[P]] to be a binary relation on
Env in the following manner...

60



Assignment

(η, η′) ∈ [[x := e]] if, and only if η′ = η[x 7→ [[e]]η]

61



Assignment: [[z := 2]]

State space (Env)

x ← 1
y ← 1
z ← 2

x ← 0
y ← 0
z ← 0

x ← 0
y ← 1
z ← 2

x ← 3
y ← 2
z ← 1

x ← 0
y ← 1
z ← 0

x ← 1
y ← 1
z ← 1

x ← 2
y ← 2
z ← 2

62



Sequencing

[[P;Q]] = [[P]]; [[Q]]

where, on the RHS, ; is relational composition.

63



Conditional, first attempt

[[if b then P else Q fi]] =

{
[[P]] if [[b]]η = true

[[Q]] otherwise.

64



Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of Env:

〈b〉 = {η : [[b]]η = true}

This can be extended to a binary relation (i.e. a program):

[[b]] = {(η, η) : η ∈ 〈b〉}

Intuitively, b corresponds to the program

if b then skip else ⊥ fi

65



Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of Env:

〈b〉 = {η : [[b]]η = true}

This can be extended to a binary relation (i.e. a program):

[[b]] = {(η, η) : η ∈ 〈b〉}

Intuitively, b corresponds to the program

if b then skip else ⊥ fi

66



Conditional, better attempt

[[if b then P else Q fi]] = [[b;P]] ∪ [[¬b;Q]]

67



While

while b do P od

Do 0 or more executions of P while b holds

Terminate when b does not hold

How to do “0 or more” executions of (b;P)?

68



While

while b do P od

Do 0 or more executions of (b;P)

Terminate with an execution of ¬b

How to do “0 or more” executions of (b;P)?

69



While

while b do P od

Do 0 or more executions of (b;P)

Terminate with an execution of ¬b

How to do “0 or more” executions of (b;P)?

70



Transitive closure

Given a binary relation R ⊆ E × E , the transitive closure of R, R∗

is defined to be the limit of the sequence

R0 ∪ R1 ∪ R2 · · ·

where

R0 = ∆, the diagonal relation

Rn+1 = Rn;R

NB

R∗ is the smallest transitive relation which contains R

Related to the Kleene star operation seen in languages: Σ∗

Technically, R∗ is the least-fixed point of f (X ) = X ∪ X ;R

71



Transitive closure

Given a binary relation R ⊆ E × E , the transitive closure of R, R∗

is defined to be the limit of the sequence

R0 ∪ R1 ∪ R2 · · ·

where

R0 = ∆, the diagonal relation

Rn+1 = Rn;R

NB

R∗ is the smallest transitive relation which contains R

Related to the Kleene star operation seen in languages: Σ∗

Technically, R∗ is the least-fixed point of f (X ) = X ∪ X ;R

72



While

[[while b do P od]] = [[b;P]]∗; [[¬b]]

Do 0 or more executions of (b;P)

Conclude with an execution of ¬b

73



Validity

A Hoare triple is valid, written |= {ϕ}P {ψ} if

[[P]](〈ϕ〉) ⊆ 〈ψ〉.

That is, the relational image under [[P]] of the set of states where
ϕ holds is contained in the set of states where ψ holds.

74



Validity

75



Validity

〈ϕ〉

76



Validity

〈ϕ〉 〈ψ〉

77



Validity

〈ϕ〉 〈ψ〉

[[P]]

78



Validity

〈ϕ〉 〈ψ〉
[[P]](〈ϕ〉)

[[P]]

79


