COMP2111 Week 5
Term 1, 2019
Hoare Logic II
Summary

- \mathcal{L}: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Summary

- \mathcal{L}: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
\(\mathcal{L} \): A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: 0, 1, 2, …
- Function symbols: +, ∗, …
- Predicate symbols: <, ≤, ≥, |, …

An (arithmetic) expression is a term over this vocabulary.

A boolean expression is a predicate formula over this vocabulary.
Consider the vocabulary of basic arithmetic:

- **Constant symbols**: 0, 1, 2, …
- **Function symbols**: +, *, …
- **Predicate symbols**: <, ≤, ≥, |, …

An *(arithmetic) expression* is a term over this vocabulary.

A **boolean expression** is a predicate formula over this vocabulary.
The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x := e$

where x is a variable and e is an arithmetic expression.

Sequencing: $P;Q$

Conditional: if b then P else Q fi

where b is a boolean expression.

While: while b do P od
Factorial in \mathcal{L}

Example

\begin{align*}
f &:= 1; \\
k &:= 0; \\
\text{while } k < n \text{ do} \\
 k &:= k + 1; \\
 f &:= f \ast k \\
\text{od}
\end{align*}
Summary

- \mathcal{L}: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Hoare triple (Syntax)

\[\{ \varphi \} \; P \; \{ \psi \} \]

Intuition:
If \(\varphi \) holds in a state of some computational model
then \(\psi \) holds in the state reached after a successful execution of \(P \).
Summary

- \mathcal{L}: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Hoare Logic

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.
Assignment

\[
\{\phi[e/x]\} \ x := \ e \{\phi\}
\]

(ass)

Intuition:
If \(x\) has property \(\phi\) after executing the assignment; then \(e\) must have property \(\phi\) before executing the assignment.
Assignment

\[
\{\varphi(e)\} \ x := \ e \ \{\varphi(x)\} \quad \text{(ass)}
\]

Intuition:
If \(x \) has property \(\varphi \) after executing the assignment; then \(e \) must have property \(\varphi \) before executing the assignment.
Sequence

\[
\frac{\{\varphi\} \ P \ \{\psi\} \ \{\psi\} \ Q \ \{\rho\}}{\{\varphi\} \ P; Q \ \{\rho\}} \quad \text{(seq)}
\]

Intuition:
If the postcondition of P matches the precondition of Q we can sequentially combine the two program fragments
Conditional

\[
\begin{align*}
\{(\varphi \land g) \land P \longleftarrow \{\psi\} &\quad \{(\varphi \land \neg g) \land Q \longleftarrow \{\psi\} \\
\{\varphi\} &\text{if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\}\end{align*}
\]

(if)

Intuition:

- When a conditional is executed, either P or Q will be executed.
- If ψ is a postcondition of the conditional, then it must be a postcondition of both branches.
- Likewise, if φ is a precondition of the conditional, then it must be a precondition of both branches.
- Which branch gets executed depends on g, so we can assume g to be a precondition of P and $\neg g$ to be a precondition of Q (strengthen the preconditions).
While

\[
\{\varphi \land g\} \quad P \quad \{\varphi\}
\]

\[
\{\varphi\} \quad \text{while } g \text{ do } P \quad \text{od} \quad \{\varphi \land \neg g\}
\]

(loop)

Intuition:

- \(\varphi\) is a **loop-invariant**. It must be both a pre- and postcondition of \(P\) so that sequences of \(P\)s can be run together.

- If the while loop terminates, \(g\) cannot hold.
Precondition strengthening and Postcondition weakening

\[
\varphi' \rightarrow \varphi \quad \{\varphi\} \ P \ \{\psi\} \quad \psi \rightarrow \psi' \quad (\text{cons})
\]

Intuition:

- \(\varphi' \rightarrow \varphi \): \(\varphi' \) is **stronger** than \(\varphi \)
 - Stronger conditions impose more restrictions
 - States which satisfy \(\varphi' \) are a subset of states which satisfy \(\varphi \)
 - States reached after executing \(P \) are a subset
 - The postcondition will hold in the smaller set of terminal states

- \(\psi \rightarrow \psi' \): \(\psi' \) is **weaker** than \(\psi \)
 - Weaker conditions impose fewer restrictions
 - States which satisfy \(\psi \) are a subset of states which satisfy \(\psi' \)
 - States reached after executing \(P \) are a subset of those which satisfy \(\psi' \)
Example

\[
\begin{align*}
\{ & \text{True} \} \\
& f := 1; \\
& k := 0; \\
\textbf{while} & \neg (k = n) \ \textbf{do} \\
& \quad k := k + 1; \\
& \quad f := f \ast k \\
\textbf{od} \\
\{ & f = n! \}
\end{align*}
\]
Example

\{ \text{TRUE} \}
\begin{align*}
 f &:= 1; \\
 k &:= 0; \\
 \textbf{while} \ &\neg (k = n) \textbf{ do} \\
 &\quad k := k + 1; \\
 &\quad f := f \ast k \\
 \textbf{od} \\
 \{ f = n! \}
\end{align*}
Example (full proof)

Example

1. $\{1 = 0!\} f := 1 \{f = 0!\}$ (ass)
2. $\{f = 0!\} k := 0 \{f = k!\}$ (ass)
3. $\{1 = 0!\} f := 1; k := 0 \{f = k!\}$ (seq) : 1, 2
4. $\{f(k + 1) = (k + 1)!\} k := k + 1 \{fk = k!\}$ (ass)
5. $\{fk = k!\} f := f \ast k \{f = k!\}$ (ass)
6. $\{f(k + 1) = (k + 1)!\}$ LOOP $\{f = k!\}$ (seq) : 4, 5
7. $(f = k! \land \neg(k = n)) \rightarrow f(k + 1) = (k + 1)!$ math
8. $\{(f = k!) \land \neg(k = n)\}$ LOOP $\{f = k!\}$ (cons): 6, 7
9. $\{f = k!\}$ while . . . od $\{(f = k! \land (k = n))\}$ (loop): 8
10. $\{1 = 0!\}$ FACTORIAL $\{(f = k!) \land (k = n)\}$ (seq)
11. TRUE \rightarrow $(1 = 0!)$ math
12. $(f = k!) \land (k = n) \rightarrow f = n!$ math
13. $\{\text{TRUE}\}$ FACTORIAL $\{f = n!\}$ (cons): 10, 11, 12
Example (full proof)

1. \(\{1 = 0!\} f := 1 \{f = 0!\} \)
 \((\text{ass})\)

2. \(\{f = 0!\} k := 0 \{f = k!\} \)
 \((\text{ass})\)

3. \(\{1 = 0!\} f := 1; k := 0 \{f = k!\} \)
 \(\text{(seq)} : 1, 2\)

4. \(\{f(k + 1) = (k + 1)!\} k := k + 1 \{fk = k!\} \)
 \((\text{ass})\)

5. \(\{fk = k!\} f := f \times k \{f = k!\} \)
 \((\text{ass})\)

6. \(\{f(k + 1) = (k + 1)!\} \text{LOOP} \{f = k!\} \)
 \(\text{(seq)} : 4, 5\)

7. \((f = k!) \land \neg(k = n) \rightarrow f(k + 1) = (k + 1)! \)
 \(\text{math}\)

8. \(\{(f = k!) \land \neg(k = n)\} \text{LOOP} \{f = k!\} \)
 \(\text{(cons)}: 6, 7\)

9. \(\{f = k!\} \text{while} \ldots \text{od} \{(f = k!) \land (k = n)\} \)
 \(\text{(loop)}: 8\)

10. \(\{1 = 0!\} \text{FACTORIAL} \{(f = k!) \land (k = n)\} \)
 \(\text{(seq)}\)

11. \(\text{TRUE} \rightarrow (1 = 0!) \)
 \(\text{math}\)

12. \(((f = k!) \land (k = n)) \rightarrow f = n! \)
 \(\text{math}\)

13. \(\{\text{TRUE}\} \text{FACTORIAL} \{f = n!\} \)
 \(\text{(cons)}: 10, 11, 12\)
Example (full proof)

Example

1. \(\{ 1 = 0! \} \ f := 1 \{ f = 0! \} \) (ass)
2. \(\{ f = 0! \} \ k := 0 \{ f = k! \} \) (ass)
3. \(\{ 1 = 0! \} \ f := 1; \ k := 0 \{ f = k! \} \) (seq) : 1, 2
4. \(\{ f(k + 1) = (k + 1)! \} \ k := k + 1 \{ fk = k! \} \) (ass)
5. \(\{ fk = k! \} \ f := f \ast k \{ f = k! \} \) (ass)
6. \(\{ f(k + 1) = (k + 1)! \} \ \text{LOOP} \{ f = k! \} \) (seq) : 4, 5
7. \((f = k!) \land \neg (k = n) \rightarrow f(k + 1) = (k + 1)! \) math
8. \(\{ (f = k!) \land \neg (k = n) \} \ \text{LOOP} \{ f = k! \} \) (cons): 6, 7
9. \(\{ f = k! \} \ \text{while} \ldots \text{od} \ \{ (f = k!) \land (k = n) \} \) (loop): 8
10. \(\{ 1 = 0! \} \ \text{FACTORSIAL} \ \{ (f = k!) \land (k = n) \} \) (seq)
11. \(\text{TRUE} \rightarrow (1 = 0!) \) math
12. \(((f = k!) \land (k = n)) \rightarrow f = n! \) math
13. \(\{ \text{TRUE} \} \ \text{FACTORSIAL} \ \{ f = n! \} \) (cons): 10,11,12
Example (full proof)

Example

1. \{1 = 0!\} \ f := 1 \ \{f = 0!\} \quad (ass)
2. \{f = 0!\} \ k := 0 \ \{f = k!\} \quad (ass)
3. \{1 = 0!\} \ f := 1; \ k := 0 \ \{f = k!\} \quad (seq) : 1, 2
4. \{f(k + 1) = (k + 1)!\} \ k := k + 1 \ \{fk = k!\} \quad (ass)
5. \{fk = k!\} \ f := f \ast k \ \{f = k!\} \quad (ass)
6. \{f(k + 1) = (k + 1)!\} \ LOOP \ \{f = k!\} \quad (seq) : 4, 5
7. \(f = k!\) \land \neg(k = n) \rightarrow f(k + 1) = (k + 1)! \quad math
8. \{(f = k!) \land \neg(k = n)\} \ LOOP \ \{f = k!\} \quad (cons): 6, 7
9. \{f = k!\} \ while \ldots \ od \ \{(f = k!) \land (k = n)\} \quad (loop): 8
10. \{1 = 0!\} \ FACTORIAL \ \{(f = k!) \land (k = n)\} \quad (seq)
11. True \rightarrow (1 = 0!) \quad math
12. \((f = k!) \land (k = n)\) \rightarrow f = n! \quad math
13. \{True\} \ FACTORIAL \ \{f = n!\} \quad (cons): 10, 11, 12
Example (full proof)

Example

1. \{1 = 0!\} f := 1 \{f = 0!\} \hspace{1cm} (ass)
2. \{f = 0!\} k := 0 \{f = k!\} \hspace{1cm} (ass)
3. \{1 = 0!\} f := 1; k := 0 \{f = k!\} \hspace{1cm} (seq) : 1, 2
4. \{f(k+1) = (k+1)!\} k := k + 1 \{fk = k!\} \hspace{1cm} (ass)
5. \{fk = k!\} f := f \ast k \{f = k!\} \hspace{1cm} (ass)
6. \{f(k+1) = (k+1)!\} LOOP \{f = k!\} \hspace{1cm} (seq) : 4, 5
7. (f = k!) \land \neg(k = n) \rightarrow f(k+1) = (k+1)! \hspace{1cm} math
8. \{(f = k!) \land \neg(k = n)\} LOOP \{f = k!\} \hspace{1cm} (cons): 6, 7
9. \{f = k!\} \textbf{while} \ldots \textbf{od} \{(f = k!) \land (k = n)\} \hspace{1cm} (loop): 8
10. \{1 = 0!\} \textbf{FACTORIAL} \{(f = k!) \land (k = n)\} \hspace{1cm} (seq)
11. \textbf{TRUE} \rightarrow (1 = 0!) \hspace{1cm} math
12. ((f = k!) \land (k = n)) \rightarrow f = n! \hspace{1cm} math
13. \{\textbf{TRUE}\} \textbf{FACTORIAL} \{f = n!\} \hspace{1cm} (cons): 10, 11, 12
Example (full proof)

Example

1. \{1 = 0!\} \ f := 1 \{f = 0!\} \hspace{1cm} (ass)
2. \{f = 0!\} \ k := 0 \{f = k!\} \hspace{1cm} (ass)
3. \{1 = 0!\} \ f := 1; \ k := 0 \{f = k!\} \hspace{1cm} (seq) : 1, 2
4. \{f(k + 1) = (k + 1)!\} \ k := k + 1 \{fk = k!\} \hspace{1cm} (ass)
5. \{fk = k!\} \ f := f \ast k \{f = k!\} \hspace{1cm} (ass)
6. \{f(k + 1) = (k + 1)!\} Loop \{f = k!\} \hspace{1cm} (seq) : 4, 5
7. \((f = k!) \land \neg(k = n)\) \rightarrow \ f(k + 1) = (k + 1)! \hspace{1cm} math
8. \{(f = k!) \land \neg(k = n)\} Loop \{f = k!\} \hspace{1cm} (cons): 6, 7
9. \{f = k!\} \textbf{while} \ldots \textbf{od} \{(f = k!) \land (k = n)\} \hspace{1cm} (loop): 8
10. \{1 = 0!\} \textbf{FACTORIAL} \{(f = k!) \land (k = n)\} \hspace{1cm} (seq)
11. \textbf{TRUE} \rightarrow (1 = 0!) \hspace{1cm} math
12. \((f = k!) \land (k = n)) \rightarrow f = n! \hspace{1cm} math
13. \{\textbf{TRUE}\} \textbf{FACTORIAL} \{f = n!\} \hspace{1cm} (cons): 10, 11, 12
Example (full proof)

1. \{1 = 0!\} \ f := 1 \{f = 0!\} \quad \text{(ass)}
2. \{f = 0!\} \ k := 0 \{f = k!\} \quad \text{(ass)}
3. \{1 = 0!\} \ f := 1; \ k := 0 \{f = k!\} \quad \text{(seq) : 1, 2}
4. \{f(k + 1) = (k + 1)!\} \ k := k + 1 \{fk = k!\} \quad \text{(ass)}
5. \{fk = k!\} \ f := f \ast k \{f = k!\} \quad \text{(ass)}
6. \{f(k + 1) = (k + 1)!\} \text{ LOOP } \{f = k!\} \quad \text{(seq) : 4, 5}
7. \(f = k!\) \land \neg (k = n) \rightarrow f(k + 1) = (k + 1)! \quad \text{math}
8. \{(f = k!) \land \neg (k = n)\} \text{ LOOP } \{f = k!\} \quad \text{(cons): 6,7}
9. \{f = k!\} \text{ while...od } \{(f = k!) \land (k = n)\} \quad \text{(loop): 8}
10. \{1 = 0!\} \text{ FACTORIAL } \{(f = k!) \land (k = n)\} \quad \text{(seq)}
11. \text{ TRUE } \rightarrow (1 = 0!) \quad \text{math}
12. \((f = k!) \land (k = n)) \rightarrow f = n! \quad \text{math}
13. \{\text{ TRUE}\} \text{ FACTORIAL } \{f = n!\} \quad \text{(cons): 10,11,12}
Example (full proof)

Example

1. \{1 = 0!\} \quad f := 1 \quad \{f = 0!\} \quad \text{(ass)}
2. \quad \{f = 0!\} \quad k := 0 \quad \{f = k!\} \quad \text{(ass)}
3. \quad \{1 = 0!\} \quad f := 1; k := 0 \quad \{f = k!\} \quad \text{(seq) : 1, 2}
4. \quad \{f(k + 1) = (k + 1)!\} \quad k := k + 1 \quad \{fk = k!\} \quad \text{(ass)}
5. \quad \{fk = k!\} \quad f := f \ast k \quad \{f = k!\} \quad \text{(ass)}
6. \quad \{f(k + 1) = (k + 1)!\} \quad \text{LOOP} \quad \{f = k!\} \quad \text{(seq) : 4, 5}
7. \quad (f = k!) \land \lnot (k = n) \rightarrow f(k + 1) = (k + 1)! \quad \text{math}
8. \quad \{(f = k!) \land \lnot (k = n)\} \quad \text{LOOP} \quad \{f = k!\} \quad \text{(cons) : 6, 7}
9. \quad \{f = k!\} \quad \text{while...od} \quad \{(f = k!) \land (k = n)\} \quad \text{(loop) : 8}
10. \quad \{1 = 0!\} \quad \text{FACTORIAL} \quad \{(f = k!) \land (k = n)\} \quad \text{(seq)} \quad \text{math}
11. \quad \text{TRUE} \rightarrow (1 = 0!) \quad \text{math}
12. \quad (f = k!) \land (k = n) \rightarrow f = n! \quad \text{math}
13. \quad \{\text{TRUE}\} \quad \text{FACTORIAL} \quad \{f = n!\} \quad \text{(cons) : 10, 11, 12}
Example (full proof)

Example

1. \{1 = 0!\} f := 1 \{f = 0!\} \quad (ass)
2. \{f = 0!\} k := 0 \{f = k!\} \quad (ass)
3. \{1 = 0!\} f := 1; k := 0 \{f = k!\} \quad (seq) : 1, 2
4. \{f(k + 1) = (k + 1)!\} k := k + 1 \{fk = k!\} \quad (ass)
5. \{fk = k!\} f := f \cdot k \{f = k!\} \quad (ass)
6. \{f(k + 1) = (k + 1)!\} \text{LOOP} \{f = k!\} \quad (seq) : 4, 5
7. (f = k!) \land \neg(k = n) \to f(k + 1) = (k + 1)! \quad \text{math}
8. \{(f = k!) \land \neg(k = n)\} \text{LOOP} \{f = k!\} \quad (cons): 6, 7
9. \{f = k!\} \textbf{while} \ldots \textbf{od} \{(f = k!) \land (k = n)\} \quad (loop): 8
10. \{1 = 0!\} \text{FACTORIAL} \{(f = k!) \land (k = n)\} \quad (seq)
11. \text{TRUE} \to (1 = 0!) \quad \text{math}
12. ((f = k!) \land (k = n)) \to f = n! \quad \text{math}
13. \{\text{TRUE}\} \text{FACTORIAL} \{f = n!\} \quad (cons): 10, 11, 12
Example (full proof)

Example

1. \(\{1 = 0!\} f := 1 \{ f = 0! \} \) (ass)
2. \(\{ f = 0! \} k := 0 \{ f = k! \} \) (ass)
3. \(\{1 = 0!\} f := 1; k := 0 \{ f = k! \} \) (seq) : 1, 2
4. \(\{ f(k+1) = (k+1)! \} k := k + 1 \{ fk = k! \} \) (ass)
5. \(\{ fk = k! \} f := f \times k \{ f = k! \} \) (ass)
6. \(\{ f(k+1) = (k+1)! \} \text{LOOP} \{ f = k! \} \) (seq) : 4, 5
7. \((f = k!) \land \neg(k = n) \rightarrow f(k+1) = (k+1)! \) math
8. \(\{(f = k!) \land \neg(k = n)\} \text{LOOP} \{ f = k! \} \) (cons): 6,7
9. \(\{ f = k! \} \textbf{while} \ldots \textbf{od} \{(f = k!) \land (k = n)\} \) (loop): 8
10. \(\{1 = 0!\} \textbf{FACTORIAL} \{(f = k!) \land (k = n)\} \) (seq)
11. \(\textbf{TRUE} \rightarrow (1 = 0!) \) math
12. \(((f = k!) \land (k = n)) \rightarrow f = n! \) math
13. \(\{ \textbf{TRUE} \} \textbf{FACTORIAL} \{ f = n! \} \) (cons): 10, 11, 12
Example (full proof)

Example

1. \{1 = 0!\} f := 1 \{f = 0!\} \quad (ass)
2. \{f = 0!\} k := 0 \{f = k!\} \quad (ass)
3. \{1 = 0!\} f := 1; k := 0 \{f = k!\} \quad (seq) : 1, 2
4. \{f(k + 1) = (k + 1)!\} k := k + 1 \{fk = k!\} \quad (ass)
5. \{fk = k!\} f := f \times k \{f = k!\} \quad (ass)
6. \{f(k + 1) = (k + 1)!\} LOOP \{f = k!\} \quad (seq) : 4, 5
7. (f = k!) \land \neg (k = n) \rightarrow f(k + 1) = (k + 1)! \quad math
8. \{(f = k!) \land \neg (k = n)\} LOOP \{f = k!\} \quad (cons): 6, 7
9. \{f = k!\} \textbf{while} \ldots \textbf{od} \{(f = k!) \land (k = n)\} \quad (loop): 8
10. \{1 = 0!\} \textsc{factorial} \{(f = k!) \land (k = n)\} \quad (seq)
11. \textsc{true} \rightarrow (1 = 0!) \quad math
12. ((f = k!) \land (k = n)) \rightarrow f = n! \quad math
13. \{\textsc{true}\} \textsc{factorial} \{f = n!\} \quad (cons): 10, 11, 12
Example (full proof)

Example

1. \{1 = 0!\} \(f := 1\) \(\{f = 0!\}\) (ass)
2. \(f = 0!\) \(k := 0\) \(\{f = k!\}\) (ass)
3. \{1 = 0!\} \(f := 1; k := 0\) \(\{f = k!\}\) (seq) : 1, 2
4. \(f(k + 1) = (k + 1)!\) \(k := k + 1\) \(\{fk = k!\}\) (ass)
5. \(fk = k!\) \(f := f \ast k\) \(\{f = k!\}\) (ass)
6. \(f(k + 1) = (k + 1)!\) LOOP \(\{f = k!\}\) (seq) : 4, 5
7. \((f = k!) \land \neg(k = n)\) \(\rightarrow\) \(f(k + 1) = (k + 1)!\) math
8. \((f = k!) \land \neg(k = n)\) LOOP \(\{f = k!\}\) (cons): 6,7
9. \(f = k!\) while...od \((f = k!) \land (k = n)\) (loop): 8
10. \{1 = 0!\} FACTORIAL \((f = k!) \land (k = n)\) (seq)
11. \True \rightarrow (1 = 0!\) math
12. \((f = k!) \land (k = n)\) \(\rightarrow\) \(f = n!\) math
13. \{\True\} FACTORIAL \(\{f = n!\}\) (cons): 10,11,12
Example (proof outline)

Example

\[
\begin{align*}
&f := 1; \\
&k := 0; \\
&\textbf{while } \neg(k = n) \textbf{ do} \\
&\quad k := k + 1; \\
&\quad f := f \ast k \\
&\textbf{od}
\end{align*}
\]

\[
\begin{align*}
&\{\text{ TRUE} \} \\
&\{1 = 0! \} \\
&\{f = 0! \} \\
&\{f = k! \} \\
&\{(f = k!) \land \neg(k = n) \} \\
&\{f(k + 1) = (k + 1)! \} \\
&\{fk = k! \} \\
&\{f = k! \} \\
&\{(f = k!) \land (k = n) \} \\
&\{f = n! \} \\
\end{align*}
\]
Example (proof outline)

Example

\[
\begin{align*}
\text{Example} &\quad \{\text{TRUE}\} \\
&\quad \{1 = 0!\} \\
\text{f} &\quad := 1; \quad \{f = 0!\} \\
\text{k} &\quad := 0; \quad \{f = k!\} \\
\text{while} \quad \neg (k = n) \quad \text{do} &\quad \{(f = k!) \land \neg (k = n)\} \\
&\quad (f(k + 1) = (k + 1)! \land f = k!\} \\
\text{k} &\quad := k + 1; \quad \{f(k + 1) = (k + 1)!\} \\
\text{f} &\quad := f \ast k \quad \{fk = k!\} \\
\text{od} &\quad \{(f = k!) \land (k = n)\} \\
&\quad \{f = n!\}
\end{align*}
\]
Example (proof outline)

Example

\[
f := 1;
k := 0;
\text{while } \neg (k = n) \text{ do}
\]

\[
\begin{align*}
k & := k + 1; \\
f & := f \ast k
\end{align*}
\]

\od

\[
\{ \text{TRUE} \}
\]
\[
\{ 1 = 0! \}
\]
\[
\{ f = 0! \}
\]
\[
\{ f = k! \}
\]
\[
\{ f(k + 1) = (k + 1)! \}
\]
\[
\{ fk = k! \}
\]
\[
\{ f = k! \}
\]
\[
\{ (f = k!) \land \neg (k = n) \}
\]
\[
\{ (f = k!) \land (k = n) \}
\]
\[
\{ f = n! \} \]
Example (proof outline)

Example

\[
\begin{align*}
 f &:= 1; \\
 k &:= 0; \\
 \text{while } &\neg (k = n) \text{ do } \\
 k &:= k + 1; \\
 f &:= f \ast k \\
 \text{od}
\end{align*}
\]

\[
\begin{align*}
 \{ \text{TRUE} \} &
 \{ 1 = 0! \} \\
 \{ f = 0! \} &
 \{ f = k! \}
\end{align*}
\]

\[
\begin{align*}
 \{ (f = k!) \land \neg (k = n) \} &
 \{ f(k + 1) = (k + 1)! \}
\end{align*}
\]

\[
\begin{align*}
 \{ fk = k! \} &
 \{ f = k! \}
\end{align*}
\]

\[
\begin{align*}
 \{ (f = k!) \land (k = n) \} &
 \{ f = n! \}
\end{align*}
\]
Example (proof outline)

Example

\[
\begin{align*}
 f & := 1; & \{ \text{TRUE} \} \\
 k & := 0; & \{ 1 = 0! \} \\
 \text{while } \neg (k = n) \textbf{ do} & \{ f = 0! \} \\
 & \{ f = k! \} \\
 & \{(f = k!) \land \neg (k = n)\} \\
 & \{ f(k + 1) = (k + 1)! \} \\
 & \{ fk = k! \} \\
 & \{ f = k! \} \\
 & \{(f = k!) \land (k = n)\} \\
 & \{ f = n! \} \\
 \text{od} & \\
 k & := k + 1; & \\
 f & := f \ast k & \\
\end{align*}
\]
Example (proof outline)

Example

\[
\begin{align*}
\text{True} & \quad \{1 = 0!\} \\
\text{f} & := 1; \quad \{f = 0!\} \\
\text{k} & := 0; \quad \{f = k!\} \\
\text{while } \neg(k = n) \text{ do} & \quad \{(f = k!) \land \neg(k = n)\} \\
\text{k} & := k + 1; \quad \{f_k = k!\} \\
\text{f} & := f \ast k \quad \{f = k!\} \\
\text{od} & \quad \{(f = k!) \land (k = n)\} \\
\text{f} & := f \ast k \quad \{f = n!\}
\end{align*}
\]
Example (proof outline)

Example

<table>
<thead>
<tr>
<th>Statement</th>
<th>Invariants</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f := 1;$</td>
<td>${\text{TRUE}}$</td>
</tr>
<tr>
<td>$k := 0;$</td>
<td>${1 = 0!}$</td>
</tr>
<tr>
<td>while $\neg(k = n)$ do</td>
<td>${f = 0!}$</td>
</tr>
<tr>
<td>$k := k + 1;$</td>
<td>${f = k!}$</td>
</tr>
<tr>
<td>$f := f \times k$</td>
<td>${(f = k!) \land \neg(k = n)}$</td>
</tr>
<tr>
<td>od</td>
<td>${f(k + 1) = (k + 1)!}$</td>
</tr>
<tr>
<td></td>
<td>${f(k + 1) = (k + 1)!}$</td>
</tr>
<tr>
<td></td>
<td>${f(k + 1) = (k + 1)!}$</td>
</tr>
<tr>
<td></td>
<td>${fk = k!}$</td>
</tr>
<tr>
<td></td>
<td>${(f = k!) \land (k = n)}$</td>
</tr>
<tr>
<td></td>
<td>${(f = k!) \land (k = n)}$</td>
</tr>
<tr>
<td></td>
<td>${(f = k!) \land (k = n)}$</td>
</tr>
<tr>
<td></td>
<td>${f = n!}$</td>
</tr>
<tr>
<td></td>
<td>${f = n!}$</td>
</tr>
</tbody>
</table>
Example (proof outline)

<table>
<thead>
<tr>
<th>Example</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$f := 1;$</td>
<td>${\text{TRUE}}$</td>
</tr>
<tr>
<td>$k := 0;$</td>
<td>${1 = 0!}$</td>
</tr>
<tr>
<td>while $\neg(k = n)$ do</td>
<td>${f = 0!}$</td>
</tr>
<tr>
<td>$k := k + 1;$</td>
<td>${f = k!}$</td>
</tr>
<tr>
<td>$f := f \times k$</td>
<td>${fk = k!}$</td>
</tr>
<tr>
<td>od</td>
<td>${(f = k!) \land (k = n)}$</td>
</tr>
<tr>
<td></td>
<td>${f = n!}$</td>
</tr>
</tbody>
</table>
Example (proof outline)

Example

\[
\begin{align*}
f &:= 1; \quad \{ \text{TRUE} \} \\
k &:= 0; \quad \{ 1 = 0! \} \\
\textbf{while } \neg (k = n) \textbf{ do} & \quad \{ f = 0! \} \\
\quad k &:= k + 1; \quad \{ f = k! \} \\
\quad f &:= f \times k \quad \{ f(k + 1) = (k + 1)! \} \\
\textbf{od} & \quad \{(f = k!) \land \neg (k = n)\} \\
\end{align*}
\]
Example (proof outline)

Example

\[
\begin{align*}
f &:= 1; & \{ \text{TRUE} \} \\
k &:= 0; & \{ 1 = 0! \} \\
\textbf{while } \lnot (k = n) \textbf{ do} & \{ f = 0! \} \\
\quad k &:= k + 1; & \{ f = k! \} \\
\quad f &:= f \ast k & \{ f(k + 1) = (k + 1)! \} \\
\textbf{od} & \{ f(k + 1) = (k + 1)! \} \\
\end{align*}
\]
Summary

- \(\mathcal{L} \): A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Recall

If R and S are binary relations, then the relational composition of R and S, $R; S$ is the relation:

$$R; S := \{(a, c) : \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$$

If $R \subseteq A \times B$ is a relation, and $X \subseteq A$, then the image of X under R, $R(X)$ is the subset of B defined as:

$$R(X) := \{b \in B : \exists a \text{ in } X \text{ such that } (a, b) \in R\}.$$
Informal semantics

Hoare logic gives a proof of $\{\varphi\} P \{\psi\}$, that is: $\vdash \{\varphi\} P \{\psi\}$
(axiomatic semantics)

How do we determine when $\{\varphi\} P \{\psi\}$ is valid, that is:
$\models \{\varphi\} P \{\psi\}$?

If φ holds in a state of some computational model then ψ holds in the state reached after a successful execution of P.
Informal semantics

Hoare logic gives a proof of $\{ \varphi \} P \{ \psi \}$, that is: $\vdash \{ \varphi \} P \{ \psi \}$
(axiomatic semantics)

How do we determine when $\{ \varphi \} P \{ \psi \}$ is valid, that is:
$\models \{ \varphi \} P \{ \psi \}$?

If φ holds in a state of some computational model
then ψ holds in the state reached after a successful execution of P.
Informal semantics: Programs

What is a program?

A partial function mapping system states to system states.
Informal semantics: Programs

What is a program?

A partial function mapping system states to system states
Informal semantics: Programs

What is a program?

A partial function mapping system states to system states
Informal semantics: Programs

What is a program?

A relation between system states
Informal semantics: States

What is a state of a computational model?

Two approaches:

- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them

- Abstract: from a mathematical perspective
 - Pre-/postcondition predicates hold in a state ⇒ States are logical interpretations (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols ⇒ States are fully determined by environments ⇒ States are functions that map variables to values
What is a state of a computational model?

Two approaches:

- **Concrete: from a physical perspective**
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them

- **Abstract: from a mathematical perspective**
 - The pre-/postcondition predicates hold in a state
 - States are **logical interpretations** (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols
 - States are fully determined by **environments**
 - States are functions that map variables to values
Informal semantics: States

What is a state of a computational model?

Two approaches:

- **Concrete: from a physical perspective**
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them

- **Abstract: from a mathematical perspective**
 - The pre-/postcondition predicates hold in a state
 - States are logical interpretations (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols
 - States are fully determined by environments
 - States are functions that map variables to values
Informal semantics: States

What is a state of a computational model?

Two approaches:

- **Concrete: from a physical perspective**
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them

- **Abstract: from a mathematical perspective**
 - The pre-/postcondition predicates hold in a state
 - States are **logical interpretations** (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols
 - States are fully determined by environments
 - States are functions that map variables to values
Informal semantics: States

What is a state of a computational model?

Two approaches:

- **Concrete: from a physical perspective**
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them

- **Abstract: from a mathematical perspective**
 - The pre-/postcondition predicates *hold* in a state
 - States are **logical interpretations** (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols
 - States are fully determined by environments
 - States are functions that map variables to values
Informal semantics: States

What is a state of a computational model?

Two approaches:
- **Concrete**: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them
- **Abstract**: from a mathematical perspective
 - The pre-/postcondition predicates hold in a state
 - States are **logical interpretations** (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols
 - States are fully determined by *environments*
 - States are functions that map variables to values
Informal semantics: **States and Programs**

State space (Env)

- $x \leftarrow 0$
- $y \leftarrow 0$
- $z \leftarrow 0$

- $x \leftarrow 3$
- $y \leftarrow 2$
- $z \leftarrow 1$

- $x \leftarrow 1$
- $y \leftarrow 1$
- $z \leftarrow 1$

- $x \leftarrow 1$
- $y \leftarrow 1$
- $z \leftarrow 2$

- $x \leftarrow 2$
- $y \leftarrow 2$
- $z \leftarrow 2$

- $x \leftarrow 0$
- $y \leftarrow 1$
- $z \leftarrow 2$

- $x \leftarrow 0$
- $y \leftarrow 1$
- $z \leftarrow 0$
Informal semantics: **States and Programs**

State space (ENV)

- $x \leftarrow 0$
- $y \leftarrow 0$
- $z \leftarrow 0$

- $x \leftarrow 1$
- $y \leftarrow 1$
- $z \leftarrow 1$

- $x \leftarrow 1$
- $y \leftarrow 1$
- $z \leftarrow 2$

- $x \leftarrow 2$
- $y \leftarrow 2$
- $z \leftarrow 2$

- $x \leftarrow 3$
- $y \leftarrow 2$
- $z \leftarrow 1$
Informal semantics: States and Programs
An **environment** or **state** is a function from variables to numeric values. We denote by Env the set of all environments.

NB

An environment, η, assigns a numeric value $[e]^{\eta}$ to all expressions e, and a boolean value $[b]^{\eta}$ to all boolean expressions b.

Given a program P of \mathcal{L}, we define $[P]$ to be a binary relation on Env in the following manner...
An **environment** or **state** is a function from variables to numeric values. We denote by \(\mathbb{Env} \) the set of all environments.

NB

An environment, \(\eta \), assigns a numeric value \(\llbracket e \rrbracket^\eta \) to all expressions \(e \), and a boolean value \(\llbracket b \rrbracket^\eta \) to all boolean expressions \(b \).

Given a program \(P \) of \(\mathcal{L} \), we define \(\llbracket P \rrbracket \) to be a **binary relation** on \(\mathbb{Env} \) in the following manner...
Assignment

\[(\eta, \eta') \in [x := e] \text{ if, and only if } \eta' = \eta[x \mapsto [e]^{\eta}]\]
Assignment: \[z := 2\]

State space (\(\text{Env}\))

\[
\begin{align*}
\text{x} & \leftarrow 0 \\
\text{y} & \leftarrow 0 \\
\text{z} & \leftarrow 0 \\
\text{x} & \leftarrow 3 \\
\text{y} & \leftarrow 2 \\
\text{z} & \leftarrow 1 \\
\text{x} & \leftarrow 1 \\
\text{y} & \leftarrow 1 \\
\text{z} & \leftarrow 1 \\
\text{x} & \leftarrow 0 \\
\text{y} & \leftarrow 1 \\
\text{z} & \leftarrow 2 \\
\text{x} & \leftarrow 0 \\
\text{y} & \leftarrow 1 \\
\text{z} & \leftarrow 0 \\
\text{x} & \leftarrow 1 \\
\text{y} & \leftarrow 2 \\
\text{z} & \leftarrow 2 \\
\text{x} & \leftarrow 2 \\
\text{y} & \leftarrow 2 \\
\text{z} & \leftarrow 2 \\
\end{align*}
\]
Sequencing

\[[P; Q] = [P]; [Q] \]

where, on the RHS, ; is relational composition.
Conditional, first attempt

\[
[\text{if } b \text{ then } P \text{ else } Q \text{ fi}] = \begin{cases}
[P] & \text{if } [b] = \text{true} \\
[Q] & \text{otherwise.}
\end{cases}
\]
Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of Env:

$$\langle b \rangle = \{ \eta : \llbracket b \rrbracket^\eta = \text{true} \}$$

This can be extended to a binary relation (i.e. a program):

$$\llbracket b \rrbracket = \{ (\eta, \eta) : \eta \in \langle b \rangle \}$$

Intuitively, b corresponds to the program

if b then skip else \perp fi
A boolean expression b defines a subset (or unary relation) of Env:

$$\langle b \rangle = \{ \eta : [b]^{\eta} = \text{true} \}$$

This can be extended to a binary relation (i.e. a program):

$$[b] = \{ (\eta, \eta) : \eta \in \langle b \rangle \}$$

Intuitively, b corresponds to the program

$$\text{if } b \text{ then skip else } \bot \text{ fi}$$
Conditional, better attempt

$$[\text{if } b \text{ then } P \text{ else } Q \text{ fi}] = [b; P] \cup [\neg b; Q]$$
While

`while b do P od`

- Do 0 or more executions of P while b holds
- Terminate when b does not hold

How to do “0 or more” executions of $(b; P)$?
While

while b do P od

- Do 0 or more executions of $(b; P)$
- Terminate with an execution of $\neg b$

How to do “0 or more” executions of $(b; P)$?
While

\[\text{while } b \text{ do } P \text{ od} \]

- Do 0 or more executions of \((b; P)\)
- Terminate with an execution of \(\neg b\)

How to do “0 or more” executions of \((b; P)\)?
Transitive closure

Given a binary relation $R \subseteq E \times E$, the transitive closure of R, R^* is defined to be the limit of the sequence

$$R^0 \cup R^1 \cup R^2 \ldots$$

where

- $R^0 = \Delta$, the diagonal relation
- $R^{n+1} = R^n \cup R$

NB

- R^* is the smallest transitive relation which contains R
- Related to the Kleene star operation seen in languages: Σ^*

Technically, R^* is the least-fixed point of $f(X) = X \cup X; R$
Transitive closure

Given a binary relation $R \subseteq E \times E$, the *transitive closure of R, R^** is defined to be the limit of the sequence

$$R^0 \cup R^1 \cup R^2 \ldots$$

where

- $R^0 = \Delta$, the diagonal relation
- $R^{n+1} = R^n; R$

NB

- R^* *is the smallest transitive relation which contains R
- *Related to the Kleene star operation seen in languages: Σ^*

Technically, R^* is the **least-fixed point** of $f(X) = X \cup X; R$
While

\[[\textbf{while } b \textbf{ do } P \textbf{ od}] = [b; P]^*; [\neg b] \]

- Do 0 or more executions of \((b; P)\)
- Conclude with an execution of \(\neg b\)
A Hoare triple is valid, written $\models \{ \varphi \} P \{ \psi \}$ if

$$\left[P \right](\langle \varphi \rangle) \subseteq \langle \psi \rangle.$$

That is, the relational image under $\left[P \right]$ of the set of states where φ holds is contained in the set of states where ψ holds.
Validity
Validity

\[\langle \varphi \rangle \]
Validity

\[\langle \varphi \rangle \quad [P] \quad \langle \psi \rangle \]

\[\langle \varphi \rangle \quad \text{[}P\text{]}(\langle \varphi \rangle) \quad \langle \psi \rangle \]