COMP2111 Week 5
 Term 1, 2019 Hoare Logic II

Summary

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Summary

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

\mathcal{L} : A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: $0,1,2, \ldots$
- Function symbols: $+, *, \ldots$
- Predicate symbols: $<, \leq, \geq, \mid, \ldots$

\mathcal{L} : A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: $0,1,2, \ldots$
- Function symbols: $+, *, \ldots$
- Predicate symbols: $<, \leq, \geq, \mid, \ldots$
- An (arithmetic) expression is a term over this vocabulary.
- A boolean expression is a predicate formula over this vocabulary.

The language \mathcal{L}

The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x:=e$
where x is a variable and e is an arithmetic expression.
Sequencing: $P ; Q$
Conditional: if b then P else $Q \mathbf{f i}$ where b is a boolean expression.
While: while b do P od

Factorial in \mathcal{L}

Example

$$
\begin{aligned}
& f:=1 ; \\
& k:=0 ; \\
& \text { while } k<n \text { do } \\
& \quad k:=k+1 ; \\
& \quad f:=f * k \\
& \text { od }
\end{aligned}
$$

Summary

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Hoare triple (Syntax)

$$
\{\varphi\} P\{\psi\}
$$

Intuition:
If φ holds in a state of some computational model then ψ holds in the state reached after a successful execution of P.

Summary

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Hoare Logic

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.

Assignment

$$
\overline{\{\varphi[e / x]\} x:=e\{\varphi\}}
$$

(ass)

Assignment

Intuition:
If x has property φ after executing the assignment; then e must have property φ before executing the assignment

Sequence

$$
\frac{\{\varphi\} P\{\psi\} \quad\{\psi\} Q\{\rho\}}{\{\varphi\} P ; Q\{\rho\}}
$$

Intuition:
If the postcondition of P matches the precondition of Q we can sequentially combine the two program fragments

Conditional

$$
\begin{equation*}
\frac{\{\varphi \wedge g\} P\{\psi\} \quad\{\varphi \wedge \neg g\} Q\{\psi\}}{\{\varphi\} \text { if } g \text { then } P \text { else } Q \text { fi }\{\psi\}} \tag{if}
\end{equation*}
$$

Intuition:

- When a conditional is executed, either P or Q will be executed.
- If ψ is a postcondition of the conditional, then it must be a postcondition of both branches
- Likewise, $\mathrm{f} \varphi$ is a precondition of the conditional, then it must be a precondition of both branches
- Which branch gets executed depends on g, so we can assume g to be a precondition of P and $\neg g$ to be a precondition of Q (strengthen the preconditions).

While

$$
\frac{\{\varphi \wedge g\} P\{\varphi\}}{\{\varphi\} \text { while } g \text { do } P \text { od }\{\varphi \wedge \neg g\}} \quad \text { (loop) }
$$

Intuition:

- φ is a loop-invariant. It must be both a pre- and postcondition of P so that sequences of $P \mathrm{~s}$ can be run together.
- If the while loop terminates, g cannot hold.

Precondition strengthening and Postcondition weakening

$$
\begin{equation*}
 \tag{cons}
\end{equation*}
$$

Intuition:

- $\varphi^{\prime} \rightarrow \varphi: \varphi^{\prime}$ is stronger than φ
- Stronger conditions impose more restrictions
\Rightarrow States which satisfy φ^{\prime} are a subset of states which satisfy φ
\Rightarrow States reached after executing P are a subset
\Rightarrow The postcondition will hold in the smaller set of terminal states
- $\psi \rightarrow \psi^{\prime}: \psi^{\prime}$ is weaker than ψ
- Weaker conditions impose fewer restrictions
\Rightarrow States which satisfy ψ are a subset of states which satisfy ψ^{\prime}
\Rightarrow States reached after executing P are a subset of those which satisfy ψ^{\prime}

Example

Example

$$
\begin{aligned}
& f:=1 \\
& k:=0 \\
& \text { while } \neg(k=n) \text { do } \\
& \qquad k:=k+1 \\
& \quad f:=f * k \\
& \text { od }
\end{aligned}
$$

Example

Example

$$
\begin{aligned}
& \{\text { TRUE }\} \\
& f:=1 ; \\
& k:=0 ; \\
& \text { while } \neg(k=n) \text { do } \\
& \quad k:=k+1 ; \\
& \quad f:=f * k \\
& \text { od } \\
& \{f=n!\}
\end{aligned}
$$

Example (full proof)

Example

1. $\{1=0!\} f:=1\{f=0!\}$

Example (full proof)

Example

$$
\begin{array}{ll}
\text { 1. } & \{1=0!\} f:=1\{f=0!\} \\
\text { 2. } & \{f=0!\} k:=0\{f=k!\} \tag{ass}
\end{array}
$$

Example (full proof)

Example

1. $\{1=0!\} f:=1\{f=0!\}$
2. $\{f=0!\} k:=0\{f=k!\}$
3. $\{1=0!\} f:=1 ; k:=0\{f=k!\}$

Example (full proof)

Example

1. $\{1=0!\} f:=1\{f=0!\}$
2. $\{f=0!\} k:=0\{f=k!\}$
3. $\{1=0!\} f:=1 ; k:=0\{f=k!\}$
4. $\{f(k+1)=(k+1)!\} k:=k+1\{f k=k!\}$
(ass)
(ass)
(seq) : 1, 2
(ass)

Example (full proof)

Example

1. $\{1=0!\} f:=1\{f=0!\}$
2. $\{f=0!\} k:=0\{f=k!\}$
3. $\{1=0!\} f:=1 ; k:=0\{f=k!\}$
4. $\{f(k+1)=(k+1)!\} k:=k+1\{f k=k!\}$
5. $\{f k=k!\} f:=f * k\{f=k!\}$
(ass)
(ass)
(seq) : 1, 2
(ass)
(ass)

Example (full proof)

Example

1. $\{1=0!\} f:=1\{f=0!\}$
2. $\{f=0!\} k:=0\{f=k!\}$
3. $\{1=0!\} f:=1 ; k:=0\{f=k!\}$
4. $\{f(k+1)=(k+1)!\} k:=k+1\{f k=k!\}$
5. $\{f k=k!\} f:=f * k\{f=k!\}$
6. $\{f(k+1)=(k+1)$! $\} \operatorname{LOOP}\{f=k!\}$
(seq) : 4, 5

Example (full proof)

Example

1.	$\{1=0!\} f:=1\{f=0!\}$	(ass)
2.	$\{f=0!\} k:=0\{f=k!\}$	(ass)
3.	$\{1=0!\} f:=1 ; k:=0\{f=k!\}$	(seq) $: 1,2$
4.	$\{f(k+1)=(k+1)!\} k:=k+1\{f k=k!\}$	(ass)
5.	$\{f k=k!\} f:=f * k\{f=k!\}$	(ass)
6.	$\{f(k+1)=(k+1)!\} \operatorname{LoOP}\{f=k!\}$	(seq) $: 4,5$
7.	$(f=k!) \wedge \neg(k=n) \rightarrow f(k+1)=(k+1)!$	math

Example (full proof)

Example

1. $\{1=0!\} f:=1\{f=0!\}$
(ass)
2. $\{f=0!\} k:=0\{f=k!\}$
3. $\{1=0!\} f:=1 ; k:=0\{f=k!\}$
4. $\{f(k+1)=(k+1)!\} k:=k+1\{f k=k!\}$
(seq) : 1,2
(ass)
5. $\{f k=k!\} f:=f * k\{f=k!\}$
6. $\{f(k+1)=(k+1)!\} \operatorname{LOOP}\{f=k!\}$
7. $(f=k!) \wedge \neg(k=n) \rightarrow f(k+1)=(k+1)$!
(seq) : 4, 5
8. $\{(f=k!) \wedge \neg(k=n)\} \operatorname{LOOP}\{f=k!\}$
(cons): 6,7

Example (full proof)

Example

1. $\{1=0!\} f:=1\{f=0!\}$
2. $\{f=0!\} k:=0\{f=k!\}$
3. $\{1=0!\} f:=1 ; k:=0\{f=k!\}$
4. $\{f(k+1)=(k+1)!\} k:=k+1\{f k=k!\}$
5. $\{f k=k!\} f:=f * k\{f=k!\}$
6. $\{f(k+1)=(k+1)!\} \operatorname{LOOP}\{f=k!\}$
7. $(f=k!) \wedge \neg(k=n) \rightarrow f(k+1)=(k+1)$!
8. $\{(f=k!) \wedge \neg(k=n)\} \operatorname{LOOP}\{f=k!\}$
9. $\{f=k!\}$ while \ldots od $\{(f=k!) \wedge(k=n)\}$
(seq) : 1, 2
(ass)
(seq) : 4, 5
(ass)
(ass)
math
(cons): 6,7
(loop): 8

Example (full proof)

Example

1.	$\{1=0!\} f:=1\{f=0!\}$	(ass)
2.	$\{f=0!\} k:=0\{f=k!\}$	(ass)
3.	$\{1=0!\} f:=1 ; k:=0\{f=k!\}$	(seq) 1,2
4.	$\{f(k+1)=(k+1)!\} k:=k+1\{f k=k!\}$	(ass)
5.	$\{f k=k!\} f:=f * k\{f=k!\}$	(ass)
6. $\{f(k+1)=(k+1)!\} \operatorname{LOOP}\{f=k!\}$	(seq) $: 4,5$	
7.	$(f=k!) \wedge \neg(k=n) \rightarrow f(k+1)=(k+1)!$	math
8.	$\{(f=k!) \wedge \neg(k=n)\} \operatorname{LOOP}\{f=k!\}$	(cons): 6,7
9.	$\{f=k!\}$ while \ldots od $\{(f=k!) \wedge(k=n)\}$	(loop): 8
10. $\{1=0!\}$ FACTORIAL $\{(f=k!) \wedge(k=n)\}$	(seq)	

Example (full proof)

Example

$$
\begin{array}{ll}
\text { 1. } & \{1=0!\} f:=1\{f=0!\} \\
\text { 2. } & \{f=0!\} k:=0\{f=k!\} \\
\text { 3. } & \{1=0!\} f:=1 ; k:=0\{f=k!\} \\
\text { 4. } & \{f(k+1)=(k+1)!\} k:=k+1\{f k=k!\} \\
\text { 5. } & \{f k=k!\} f:=f * k\{f=k!\} \\
\text { 6. } & \{f(k+1)=(k+1)!\} \operatorname{LOOP}\{f=k!\} \\
\text { 7. } & (f=k!) \wedge \neg(k=n) \rightarrow f(k+1)=(k+1)! \\
\text { 8. } & \{(f=k!) \wedge \neg(k=n)\} \operatorname{LOOP}\{f=k!\} \\
\text { 9. } & \{f=k!\} \text { while } . . \text { od }\{(f=k!) \wedge(k=n)\} \\
\text { 10. } & \{1=0!\} \text { FACTORIAL }\{(f=k!) \wedge(k=n)\} \\
\text { 11. } & \text { TRUE } \rightarrow(1=0!) \\
\text { 12. } & ((f=k!) \wedge(k=n)) \rightarrow f=n!
\end{array}
$$

Example (full proof)

Example

1.	$\{1=0!\} f:=1\{f=0!\}$	(ass)
2.	$\{f=0!\} k:=0\{f=k!\}$	(ass)
3.	$\{1=0!\} f:=1 ; k:=0\{f=k!\}$	(seq) $: 1,2$
4.	$\{f(k+1)=(k+1)!\} k:=k+1\{f k=k!\}$	(ass)
5. $\{f k=k!\} f:=f * k\{f=k!\}$	(ass)	
6.	$\{f(k+1)=(k+1)!\}$ LoOP $\{f=k!\}$	(seq) $: 4,5$
7.	$(f=k!) \wedge \neg(k=n) \rightarrow f(k+1)=(k+1)!$	math
8. $\{(f=k!) \wedge \neg(k=n)\} \operatorname{LOOP}\{f=k!\}$	(cons): 6,7	
9. $\{f=k!\}$ while...od $\{(f=k!) \wedge(k=n)\}$	(loop): 8	
10. $\{1=0!\}$ FACTORIAL $\{(f=k!) \wedge(k=n)\}$	(seq)	
11.	TRUE $\rightarrow(1=0!)$	math
12. $((f=k!) \wedge(k=n)) \rightarrow f=n!$	math	
13. $\{$ TRUE $\}$ FACTORIAL $\{f=n!\}$	(cons):	
		$10,11,12$

Example (proof outline)

Example

\{True\}

Example (proof outline)

Example

$\{$ True $\}$
$\{1=0!\}$

Example (proof outline)

Example

	$\{$ TRUE $\}$
	$\{1=0!\}$
	$\{f=0!\}$

Example (proof outline)

Example

$$
\begin{array}{ll}
& \{\text { TRUE }\} \\
f:=1 ; & \{1=0!\} \\
k:=0 ; & \{f=0!\} \\
& \{f=k!\}
\end{array}
$$

Example (proof outline)

Example

$$
\begin{aligned}
& f:=1 \\
& k:=0 ; \\
& \text { while } \neg(k=n) \text { do }
\end{aligned}
$$

$$
\begin{array}{r}
\{\text { TRUE }\} \\
\{1=0!\} \\
\{f=0!\} \\
\{f=k!\} \\
\{(f=k!) \wedge \neg(k=n)\}
\end{array}
$$

Example (proof outline)

Example

$$
\begin{aligned}
& f:=1 \\
& k:=0 ; \\
& \text { while } \neg(k=n) \text { do }
\end{aligned}
$$

$$
\begin{array}{r}
\{\text { TRUE }\} \\
\{1=0!\} \\
\{f=0!\} \\
\{f=k!\} \\
\{(f=k!) \wedge \neg(k=n)\} \\
\{f(k+1)=(k+1)!\}
\end{array}
$$

Example (proof outline)

Example

$$
\begin{array}{lr}
& \{\text { TRUE }\} \\
& \{1=0!\} \\
f:=1 ; & \{f=0!\} \\
k:=0 ; & \{f=k!\} \\
\text { while } \neg(k=n) \text { do } & \{(f=k!) \wedge \neg(k=n)\} \\
& \{f(k+1)=(k+1)!\} \\
k:=k+1 ; & \{f k=k!\}
\end{array}
$$

Example (proof outline)

Example

$$
\begin{aligned}
& f:=1 ; \\
& k:=0 ; \\
& \text { while } \neg(k=n) \text { do } \\
& \\
& k:=k+1 ; \\
& \quad f:=f * k
\end{aligned}
$$

$$
\begin{array}{r}
\{\text { TRUE }\} \\
\{1=0!\} \\
\{f=0!\} \\
\{f=k!\} \\
\{(f=k!) \wedge \neg(k=n)\} \\
\{f(k+1)=(k+1)!\} \\
\{f k=k!\} \\
\{f=k!\}
\end{array}
$$

Example (proof outline)

Example

$$
\begin{aligned}
& f:=1 ; \\
& k:=0 ; \\
& \text { while } \neg(k=n) \text { do } \\
& \qquad \quad:=k+1 ; \\
& \quad f:=f * k \\
& \text { od }
\end{aligned}
$$

$$
\begin{array}{r}
\{\text { TRUE }\} \\
\{1=0!\} \\
\{f=0!\} \\
\{f=k!\} \\
\{(f=k!) \wedge \neg(k=n)\} \\
\{f(k+1)=(k+1)!\} \\
\{f k=k!\} \\
\{f=k!\} \\
\{(f=k!) \wedge(k=n)\}
\end{array}
$$

Example (proof outline)

Example

$$
\begin{aligned}
& f:=1 ; \\
& k:=0 ; \\
& \text { while } \neg(k=n) \text { do } \\
& \qquad \quad:=k+1 ; \\
& \quad f:=f * k \\
& \text { od }
\end{aligned}
$$

$$
\begin{array}{r}
\{\text { TRUE }\} \\
\{1=0!\} \\
\{f=0!\} \\
\{f=k!\} \\
\{(f=k!) \wedge \neg(k=n)\} \\
\{f(k+1)=(k+1)!\} \\
\{f k=k!\} \\
\{f=k!\} \\
\{(f=k!) \wedge(k=n)\} \\
\{f=n!\}
\end{array}
$$

Summary

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Recall

If R and S are binary relations, then the relational composition of R and S, R; S is the relation:

$$
R ; S:=\{(a, c): \exists b \text { such that }(a, b) \in R \text { and }(b, c) \in S\}
$$

If $R \subseteq A \times B$ is a relation, and $X \subseteq A$, then the image of X under $R, R(X)$ is the subset of B defined as:

$$
R(X):=\{b \in B: \exists a \text { in } X \text { such that }(a, b) \in R\} .
$$

Informal semantics

Hoare logic gives a proof of $\{\varphi\} P\{\psi\}$, that is: $\vdash\{\varphi\} P\{\psi\}$ (axiomatic semantics)

How do we determine when $\{\varphi\} P\{\psi\}$ is valid, that is:
$\vDash\{\varphi\} P\{\psi\}$?

Informal semantics

Hoare logic gives a proof of $\{\varphi\} P\{\psi\}$, that is: $\vdash\{\varphi\} P\{\psi\}$ (axiomatic semantics)

How do we determine when $\{\varphi\} P\{\psi\}$ is valid, that is:
$\vDash\{\varphi\} P\{\psi\}$?
If φ holds in a state of some computational model then ψ holds in the state reached after a successful execution of P.

Informal semantics: Programs

What is a program?

Informal semantics: Programs

What is a program?
A function mapping system states to system states

Informal semantics: Programs

What is a program?
A partial function mapping system states to system states

Informal semantics: Programs

What is a program?
A relation between system states

Informal semantics: States

What is a state of a computational model?

Informal semantics: States

What is a state of a computational model?
Two approaches:

- Concrete: from a physical perspective
- Abstract: from a mathematical perspective

Informal semantics: States

What is a state of a computational model?
Two approaches:

- Concrete: from a physical perspective
- States are memory configurations, register contents, etc.
- Store of variables and the values associated with them
- Abstract: from a mathematical perspective

Informal semantics: States

What is a state of a computational model?
Two approaches:

- Concrete: from a physical perspective
- States are memory configurations, register contents, etc.
- Store of variables and the values associated with them
- Abstract: from a mathematical perspective
- The pre-/postcondition predicates hold in a state
\Rightarrow States are logical interpretations (Model + Environment)

Informal semantics: States

What is a state of a computational model?
Two approaches:

- Concrete: from a physical perspective
- States are memory configurations, register contents, etc.
- Store of variables and the values associated with them
- Abstract: from a mathematical perspective
- The pre-/postcondition predicates hold in a state
\Rightarrow States are logical interpretations (Model + Environment)
- There is only one model of interest: standard interpretations of arithmetical symbols

Informal semantics: States

What is a state of a computational model?
Two approaches:

- Concrete: from a physical perspective
- States are memory configurations, register contents, etc.
- Store of variables and the values associated with them
- Abstract: from a mathematical perspective
- The pre-/postcondition predicates hold in a state
\Rightarrow States are logical interpretations (Model + Environment)
- There is only one model of interest: standard interpretations of arithmetical symbols
\Rightarrow States are fully determined by environments
\Rightarrow States are functions that map variables to values

Informal semantics: States

$$
\begin{gathered}
\text { State space (ENV) } \\
\begin{array}{ll}
x \leftarrow 0 \\
y \leftarrow 0 \\
z \leftarrow 0
\end{array} \\
\begin{array}{ll}
x \leftarrow 1 \\
y \leftarrow 1 \\
z \leftarrow 1
\end{array} \\
\begin{array}{l}
x \leftarrow 1 \\
y \leftarrow 1 \\
y \leftarrow 0 \\
y \leftarrow 2 \\
z \leftarrow 1 \\
z \leftarrow 1 \\
z \leftarrow 2
\end{array} \\
\end{gathered}
$$

Informal semantics: States and Programs

Informal semantics: States and Programs

Semantics for \mathcal{L}

An environment or state is a function from variables to numeric values. We denote by Env the set of all environments.

NB

An environment, η, assigns a numeric value $\llbracket e \rrbracket^{\eta}$ to all expressions e, and a boolean value $\llbracket b \rrbracket^{\eta}$ to all boolean expressions b.

Semantics for \mathcal{L}

An environment or state is a function from variables to numeric values. We denote by Env the set of all environments.

NB

An environment, η, assigns a numeric value $\llbracket e \rrbracket^{\eta}$ to all expressions e, and a boolean value $\llbracket b \rrbracket^{\eta}$ to all boolean expressions b.

Given a program P of \mathcal{L}, we define $\llbracket P \rrbracket$ to be a binary relation on Env in the following manner...

Assignment

$$
\left(\eta, \eta^{\prime}\right) \in \llbracket x:=e \rrbracket \text { if, and only if } \quad \eta^{\prime}=\eta\left[x \mapsto \llbracket e \rrbracket^{\eta}\right]
$$

Assignment: $\llbracket z:=2 \rrbracket$
State space (Env)

Sequencing

$$
\llbracket P ; Q \rrbracket=\llbracket P \rrbracket ; \llbracket Q \rrbracket
$$

where, on the RHS, ; is relational composition.

Conditional, first attempt

$$
\llbracket i f b \text { then } P \text { else } Q \text { fi } \rrbracket=\left\{\begin{aligned}
\llbracket P \rrbracket & \text { if } \llbracket b \rrbracket^{\eta}=\text { true } \\
\llbracket Q \rrbracket & \text { otherwise }
\end{aligned}\right.
$$

Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of ENV:

$$
\langle b\rangle=\left\{\eta: \llbracket b \rrbracket^{\eta}=\text { true }\right\}
$$

This can be extended to a binary relation (i.e. a program):

$$
\llbracket b \rrbracket=\{(\eta, \eta): \eta \in\langle b\rangle\}
$$

Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of ENV:

$$
\langle b\rangle=\left\{\eta: \llbracket b \rrbracket^{\eta}=\text { true }\right\}
$$

This can be extended to a binary relation (i.e. a program):

$$
\llbracket b \rrbracket=\{(\eta, \eta): \eta \in\langle b\rangle\}
$$

Intuitively, b corresponds to the program
if b then skip else $\perp \mathbf{f i}$

Conditional, better attempt

$\llbracket i f b$ then P else $Q \mathbf{f i} \rrbracket=\llbracket b ; P \rrbracket \cup \llbracket \neg b ; Q \rrbracket$

While

while b do P od

- Do 0 or more executions of P while b holds
- Terminate when b does not hold

While

while b do P od

- Do 0 or more executions of $(b ; P)$
- Terminate with an execution of $\neg b$

While

while b do P od

- Do 0 or more executions of $(b ; P)$
- Terminate with an execution of $\neg b$

How to do " 0 or more" executions of $(b ; P)$?

Transitive closure

Given a binary relation $R \subseteq E \times E$, the transitive closure of R, R^{*} is defined to be the limit of the sequence

$$
R^{0} \cup R^{1} \cup R^{2} \ldots
$$

where

- $R^{0}=\Delta$, the diagonal relation
- $R^{n+1}=R^{n} ; R$

NB

- R^{*} is the smallest transitive relation which contains R
- Related to the Kleene star operation seen in languages: Σ^{*}

Transitive closure

Given a binary relation $R \subseteq E \times E$, the transitive closure of R, R^{*} is defined to be the limit of the sequence

$$
R^{0} \cup R^{1} \cup R^{2} \ldots
$$

where

- $R^{0}=\Delta$, the diagonal relation
- $R^{n+1}=R^{n} ; R$

NB

- R^{*} is the smallest transitive relation which contains R
- Related to the Kleene star operation seen in languages: Σ^{*}

Technically, R^{*} is the least-fixed point of $f(X)=X \cup X ; R$

While

\llbracket while b do P od $\rrbracket=\llbracket b ; P \rrbracket^{*} ; \llbracket \neg b \rrbracket$

- Do 0 or more executions of $(b ; P)$
- Conclude with an execution of $\neg b$

Validity

A Hoare triple is valid, written $\models\{\varphi\} P\{\psi\}$ if

$$
\llbracket P \rrbracket(\langle\varphi\rangle) \subseteq\langle\psi\rangle .
$$

That is, the relational image under $\llbracket P \rrbracket$ of the set of states where φ holds is contained in the set of states where ψ holds.

Validity

Validity

Validity

Validity

Validity

