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L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:

Constant symbols: 0, 1, 2, . . .

Function symbols: +, ∗, . . .
Predicate symbols: <,≤,≥, |, . . .

An (arithmetic) expression is a term over this vocabulary.

A boolean expression is a predicate formula over this
vocabulary.
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The language L

The language L is a simple imperative programming language
made up of four statements:

Assignment: x :=e
where x is a variable and e is an arithmetic
expression.

Sequencing: P;Q

Conditional: if b then P else Q fi
where b is a boolean expression.

While: while b do P od
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Factorial in L

Example

f := 1;
k := 0;
while k < n do
k := k + 1;
f := f ∗ k

od
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Hoare triple (Syntax)

{ϕ}P {ψ}

Intuition:
If ϕ holds in a state of some computational model
then ψ holds in the state reached after a successful execution of P.
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Hoare Logic

Hoare logic consists of one axiom and four inference rules for
deriving Hoare triples.
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Assignment

(ass)
{ϕ[e/x ]} x := e {ϕ}

Intuition:
If x has property ϕ after executing the assignment; then e must
have property ϕ before executing the assignment
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Assignment

(ass)
{ϕ(e)} x := e {ϕ(x)}

Intuition:
If x has property ϕ after executing the assignment; then e must
have property ϕ before executing the assignment
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Sequence

{ϕ}P {ψ} {ψ}Q {ρ}
(seq)

{ϕ}P;Q {ρ}

Intuition:
If the postcondition of P matches the precondition of Q we can
sequentially combine the two program fragments
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Conditional

{ϕ ∧ g}P {ψ} {ϕ ∧ ¬g}Q {ψ}
(if)

{ϕ} if g then P else Q fi {ψ}

Intuition:

When a conditional is executed, either P or Q will be
executed.

If ψ is a postcondition of the conditional, then it must be a
postcondition of both branches

Likewise, f ϕ is a precondition of the conditional, then it must
be a precondition of both branches

Which branch gets executed depends on g , so we can assume
g to be a precondition of P and ¬g to be a precondition of Q
(strengthen the preconditions).
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While

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

Intuition:

ϕ is a loop-invariant. It must be both a pre- and
postcondition of P so that sequences of Ps can be run
together.

If the while loop terminates, g cannot hold.
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Precondition strengthening and Postcondition
weakening

ϕ′ → ϕ {ϕ}P {ψ} ψ → ψ′
(cons)

{ϕ′}P {ψ′}

Intuition:

ϕ′ → ϕ: ϕ′ is stronger than ϕ

Stronger conditions impose more restrictions
⇒ States which satisfy ϕ′ are a subset of states which satisfy ϕ
⇒ States reached after executing P are a subset
⇒ The postcondition will hold in the smaller set of terminal states

ψ → ψ′: ψ′ is weaker than ψ

Weaker conditions impose fewer restrictions
⇒ States which satisfy ψ are a subset of states which satisfy ψ′

⇒ States reached after executing P are a subset of those which
satisfy ψ′
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Example

Example

{True}
f := 1;
k := 0;
while ¬(k = n) do

k := k + 1;
f := f ∗ k

od
{f = n!}
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Example (full proof)
Example

1. {1 = 0!} f := 1 {f = 0!} (ass)
2. {f = 0!} k := 0 {f = k!} (ass)
3. {1 = 0!} f := 1; k := 0 {f = k!} (seq) : 1, 2
4. {f (k + 1) = (k + 1)!} k := k + 1 {fk = k!} (ass)
5. {fk = k!} f := f ∗ k {f = k!} (ass)
6. {f (k + 1) = (k + 1)!}Loop {f = k!} (seq) : 4, 5
7. (f = k!) ∧ ¬(k = n) → f (k + 1) = (k + 1)! math
8. {(f = k!) ∧ ¬(k = n)}Loop {f = k!} (cons): 6,7
9. {f = k!}while . . . od {(f = k!) ∧ (k = n)} (loop): 8
10. {1 = 0!}Factorial {(f = k!) ∧ (k = n)} (seq)
11. True→ (1 = 0!) math
12. ((f = k!) ∧ (k = n))→ f = n! math
13. {True}Factorial {f = n!} (cons):

10,11,12
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Example (proof outline)

Example

{True}
{1 = 0!}

f := 1; {f = 0!}
k := 0; {f = k!}
while ¬(k = n) do {(f = k!) ∧ ¬(k = n)}

{f (k + 1) = (k + 1)!}
k := k + 1; {fk = k!}
f := f ∗ k {f = k!}

od {(f = k!) ∧ (k = n)}
{f = n!}
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Summary
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Recall

If R and S are binary relations, then the relational composition
of R and S , R; S is the relation:

R;S := {(a, c) : ∃b such that (a, b) ∈ R and (b, c) ∈ S}

If R ⊆ A× B is a relation, and X ⊆ A, then the image of X
under R, R(X ) is the subset of B defined as:

R(X ) := {b ∈ B : ∃a inX such that (a, b) ∈ R}.
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Informal semantics

Hoare logic gives a proof of {ϕ}P {ψ}, that is: ` {ϕ}P {ψ}
(axiomatic semantics)

How do we determine when {ϕ}P {ψ} is valid, that is:
|= {ϕ}P {ψ}?

If ϕ holds in a state of some computational model
then ψ holds in the state reached after a successful execution of P.
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Informal semantics: Programs

What is a program?

A partial function mapping system states to system states
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Informal semantics: Programs

What is a program?

A partial function mapping system states to system states

48



Informal semantics: Programs

What is a program?

A relation between system states
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Informal semantics: States

What is a state of a computational model?

Two approaches:

Concrete: from a physical perspective

States are memory configurations, register contents, etc.
Store of variables and the values associated with them

Abstract: from a mathematical perspective

The pre-/postcondition predicates hold in a state
⇒ States are logical interpretations (Model + Environment)

There is only one model of interest: standard interpretations of
arithmetical symbols

⇒ States are fully determined by environments
⇒ States are functions that map variables to values
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Informal semantics: States and Programs

State space (Env)

x ← 1
y ← 1
z ← 2

x ← 0
y ← 0
z ← 0

x ← 0
y ← 1
z ← 2

x ← 3
y ← 2
z ← 1

x ← 0
y ← 1
z ← 0

x ← 1
y ← 1
z ← 1

x ← 2
y ← 2
z ← 2
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Informal semantics: States and Programs

58



Semantics for L

An environment or state is a function from variables to numeric
values. We denote by Env the set of all environments.

NB

An environment, η, assigns a numeric value [[e]]η to all expressions
e, and a boolean value [[b]]η to all boolean expressions b.

Given a program P of L, we define [[P]] to be a binary relation on
Env in the following manner...
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Assignment

(η, η′) ∈ [[x := e]] if, and only if η′ = η[x 7→ [[e]]η]
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Assignment: [[z := 2]]

State space (Env)

x ← 1
y ← 1
z ← 2

x ← 0
y ← 0
z ← 0

x ← 0
y ← 1
z ← 2

x ← 3
y ← 2
z ← 1

x ← 0
y ← 1
z ← 0

x ← 1
y ← 1
z ← 1

x ← 2
y ← 2
z ← 2
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Sequencing

[[P;Q]] = [[P]]; [[Q]]

where, on the RHS, ; is relational composition.
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Conditional, first attempt

[[if b then P else Q fi]] =

{
[[P]] if [[b]]η = true

[[Q]] otherwise.
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Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of Env:

〈b〉 = {η : [[b]]η = true}

This can be extended to a binary relation (i.e. a program):

[[b]] = {(η, η) : η ∈ 〈b〉}

Intuitively, b corresponds to the program

if b then skip else ⊥ fi
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Conditional, better attempt

[[if b then P else Q fi]] = [[b;P]] ∪ [[¬b;Q]]

67



While

while b do P od

Do 0 or more executions of P while b holds

Terminate when b does not hold

How to do “0 or more” executions of (b;P)?
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Transitive closure

Given a binary relation R ⊆ E × E , the transitive closure of R, R∗

is defined to be the limit of the sequence

R0 ∪ R1 ∪ R2 · · ·

where

R0 = ∆, the diagonal relation

Rn+1 = Rn;R

NB

R∗ is the smallest transitive relation which contains R

Related to the Kleene star operation seen in languages: Σ∗

Technically, R∗ is the least-fixed point of f (X ) = X ∪ X ;R
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While

[[while b do P od]] = [[b;P]]∗; [[¬b]]

Do 0 or more executions of (b;P)

Conclude with an execution of ¬b
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Validity

A Hoare triple is valid, written |= {ϕ}P {ψ} if

[[P]](〈ϕ〉) ⊆ 〈ψ〉.

That is, the relational image under [[P]] of the set of states where
ϕ holds is contained in the set of states where ψ holds.
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Validity
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Validity

〈ϕ〉
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Validity

〈ϕ〉 〈ψ〉
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Validity

〈ϕ〉 〈ψ〉

[[P]]
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Validity

〈ϕ〉 〈ψ〉
[[P]](〈ϕ〉)

[[P]]
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