COMP2111 Week 5 Term 1, 2019 Hoare Logic II

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

- $\bullet \ \mathcal{L}: \ A \ simple \ imperative \ programming \ language$
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Summary

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

\mathcal{L} : A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: 0, 1, 2, ...
- Function symbols: +, *,...
- Predicate symbols: $<, \leq, \geq, |, \dots$
- An (arithmetic) expression is a term over this vocabulary.
- A boolean expression is a predicate formula over this vocabulary.

\mathcal{L} : A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: 0, 1, 2, ...
- Function symbols: +, *, ...
- Predicate symbols: $<, \leq, \geq, |, \dots$
- An (arithmetic) expression is a term over this vocabulary.
- A **boolean expression** is a predicate formula over this vocabulary.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The language ${\cal L}$

The language ${\cal L}$ is a simple imperative programming language made up of four statements:

Assignment: x := e
 where x is a variable and e is an arithmetic
 expression.
Sequencing: P;Q
Conditional: if b then P else Q fi

where b is a boolean expression.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

While: while *b* do *P* od

Factorial in ${\cal L}$

Example

f := 1;k := 0;while <math>k < n do k := k + 1; f := f * kod

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

- $\bullet \ \mathcal{L}: \ A \ simple \ imperative \ programming \ language$
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

8

Hoare triple (Syntax)

$\left\{\varphi\right\} P\left\{\psi\right\}$

Intuition:

If φ holds in a state of some computational model then ψ holds in the state reached after a successful execution of P.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- $\bullet \ \mathcal{L}: \ A \ simple \ imperative \ programming \ language$
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Hoare Logic

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.

Assignment

$$\overline{\{\varphi[e/x]\} x := e \{\varphi\}} \quad (ass)$$

Intuition:

If x has property φ after executing the assignment; then e must have property φ before executing the assignment

Assignment

$$\overline{\{\varphi(e)\} \, x := e \, \{\varphi(x)\}} \quad (\text{ass})$$

Intuition:

If x has property φ after executing the assignment; then e must have property φ before executing the assignment

$$\frac{\{\varphi\} P\{\psi\} \ \{\psi\} Q\{\rho\}}{\{\varphi\} P; Q\{\rho\}} \quad (\mathsf{seq})$$

Intuition:

If the postcondition of ${\cal P}$ matches the precondition of ${\cal Q}$ we can sequentially combine the two program fragments

Conditional

$$\frac{\{\varphi \land g\} P\{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ if } \{\psi\}} \quad \text{(if)}$$

Intuition:

- When a conditional is executed, either *P* or *Q* will be executed.
- If ψ is a postcondition of the conditional, then it must be a postcondition of *both* branches
- Likewise, f φ is a precondition of the conditional, then it must be a precondition of both branches
- Which branch gets executed depends on g, so we can assume g to be a precondition of P and ¬g to be a precondition of Q (strengthen the preconditions).

While

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Intuition:

- φ is a loop-invariant. It must be both a pre- and postcondition of P so that sequences of Ps can be run together.
- If the while loop terminates, g cannot hold.

Precondition strengthening and Postcondition weakening

$$\frac{\varphi' \to \varphi \quad \{\varphi\} \ P \{\psi\} \quad \psi \to \psi'}{\{\varphi'\} \ P \{\psi'\}} \quad \text{(cons)}$$

Intuition:

- $\varphi' \to \varphi$: φ' is stronger than φ
 - Stronger conditions impose more restrictions
 - \Rightarrow States which satisfy arphi' are a subset of states which satisfy arphi
 - \Rightarrow States reached after executing P are a subset
 - \Rightarrow The postcondition will hold in the smaller set of terminal states
- $\psi \rightarrow \psi'$: ψ' is weaker than ψ
 - Weaker conditions impose fewer restrictions
 - \Rightarrow States which satisfy ψ are a subset of states which satisfy ψ'
 - $\Rightarrow\,$ States reached after executing P are a subset of those which satisfy ψ'

Example

Example

{Trees} f := 1; k := 0;while $\neg (k = n)$ do k := k + 1; f := f * kod {f = n}

Example

Example

{TRUE} f := 1; k := 0;while $\neg (k = n)$ do k := k + 1; f := f * kod {f = n!}

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ○ < ⊙ < ⊙

1.	$\{1 = 0!\} f := 1 \{f = 0!\}$	(ass)

1.	$\{1 = 0!\} f := 1 \{f = 0!\}$	(ass)
2.	${f = 0!} k := 0 {f = k!}$	(ass)

1.	$\{1 = 0!\} f := 1 \{f = 0!\}$	(ass)
2.	$\{f = 0!\} k := 0 \{f = k!\}$	(ass)
3.	$\{1 = 0!\} f := 1; k := 0 \{f = k!\}$	(seq): 1, 2

1.	$\{1 = 0!\} f := 1 \{f = 0!\}$	(ass)
2.	$\{f = 0!\} k := 0 \{f = k!\}$	(ass)
3.	$\{1 = 0!\} f := 1; k := 0 \{f = k!\}$	(seq) : 1, 2
4.	$\{f(k+1) = (k+1)!\} k := k+1 \{fk = k!\}$	(ass)

1.	$\{1 = 0!\} f := 1 \{f = 0!\}$	(ass)
2.	$\{f = 0!\} k := 0 \{f = k!\}$	(ass)
3.	$\{1 = 0!\} f := 1; k := 0 \{f = k!\}$	(seq) : 1, 2
4.	$\{f(k+1) = (k+1)!\} k := k+1 \{fk = k!\}$	(ass)
5.	$\{fk = k!\} f := f * k \{f = k!\}$	(ass)

1.	$\{1 = 0!\} f := 1 \{f = 0!\}$	(ass)
2.	${f = 0!} k := 0 {f = k!}$	(ass)
3.	$\{1 = 0!\} f := 1; k := 0 \{f = k!\}$	(seq): 1, 2
4.	${f(k+1) = (k+1)!}k := k+1{fk = k!}$	(ass)
5.	${fk = k!} f := f * k {f = k!}$	(ass)
6.	${f(k+1) = (k+1)!}$ LOOP ${f = k!}$	(seq): 4, 5

1.
$$\{1 = 0!\} f := 1 \{f = 0!\}$$
 (ass)
2. $\{f = 0!\} k := 0 \{f = k!\}$ (ass)
3. $\{1 = 0!\} f := 1; k := 0 \{f = k!\}$ (seq) : 1, 2
4. $\{f(k+1) = (k+1)!\} k := k+1 \{fk = k!\}$ (ass)
5. $\{fk = k!\} f := f * k \{f = k!\}$ (ass)
6. $\{f(k+1) = (k+1)!\} \text{LOOP} \{f = k!\}$ (seq) : 4, 5
7. $(f = k!) \land \neg (k = n) \rightarrow f(k+1) = (k+1)!$ math
8. $[(f = k!) \land \neg (k = n)] \text{LOOP} \{f = k!\}$ (cons): 6,7
9. $[f = k!] \text{ while ... of } [(f = k!) \land (k = n)]$ (bop) 8
10. $[1 = 0!] \text{ FACTORIAL} \{(f = k!) \land (k = n)\}$ (seq)
11. $\text{TRUE} \rightarrow (1 = 0!)$ math
12. $((f = k!) \land (k = n)) \rightarrow f = n!$ math
13. $\{\text{TRUE}\} \text{FACTORIAL} \{f = n!\}$ (cons):

1.
$$\{1 = 0!\} f := 1 \{f = 0!\}$$
 (ass)
2. $\{f = 0!\} k := 0 \{f = k!\}$ (ass)
3. $\{1 = 0!\} f := 1; k := 0 \{f = k!\}$ (seq) : 1,2
4. $\{f(k+1) = (k+1)!\} k := k+1 \{fk = k!\}$ (ass)
5. $\{fk = k!\} f := f * k \{f = k!\}$ (ass)
6. $\{f(k+1) = (k+1)!\} \text{LOOP} \{f = k!\}$ (seq) : 4,5
7. $(f = k!) \land \neg (k = n) \rightarrow f(k+1) = (k+1)!$ math
8. $\{(f = k!) \land \neg (k = n)\} \text{LOOP} \{f = k!\}$ (cons): 6,7
9. $\{i = k\} \text{ while ...od} \{(f = k!) \land (k = n)\}$ (bop) 8
10. $\{1 = 0\} \text{ Factorian} \{(f = k!) \land (k = n)\}$ (seq)
11. $\text{TRUE} \rightarrow (1 = 0!)$ math
12. $((f = k!) \land (k = n)) \rightarrow f = n!$ math
13. $\{\text{TRUE}\} \text{Factorian} \{f = n!\}$ (cons):

1.
$$\{1 = 0!\} f := 1 \{f = 0!\}$$
 (ass)
2. $\{f = 0!\} k := 0 \{f = k!\}$ (ass)
3. $\{1 = 0!\} f := 1; k := 0 \{f = k!\}$ (seq) : 1, 2
4. $\{f(k+1) = (k+1)!\} k := k+1 \{fk = k!\}$ (ass)
5. $\{fk = k!\} f := f * k \{f = k!\}$ (ass)
6. $\{f(k+1) = (k+1)!\} \text{LOOP} \{f = k!\}$ (seq) : 4, 5
7. $(f = k!) \land \neg (k = n) \rightarrow f(k+1) = (k+1)!$ math
8. $\{(f = k!) \land \neg (k = n)\} \text{LOOP} \{f = k!\}$ (cons): 6,7
9. $\{f = k!\} \text{ while ... od} \{(f = k!) \land (k = n)\}$ (loop): 8
10. $(1 = 0!) \text{ FACTORIAL} \{(f = k!) \land (k = n)\}$ (loop): 8
11. TRUE $\rightarrow (1 = 0!)$ math
12. $((f = k!) \land (k = n)) \rightarrow f = n!$ math
13. $\{\text{TRUE}\} \text{ FACTORIAL} \{f = n!\}$

1.
$$\{1 = 0!\} f := 1 \{f = 0!\}$$
 (ass)
2. $\{f = 0!\} k := 0 \{f = k!\}$ (ass)
3. $\{1 = 0!\} f := 1; k := 0 \{f = k!\}$ (seq) : 1, 2
4. $\{f(k+1) = (k+1)!\} k := k+1 \{fk = k!\}$ (ass)
5. $\{fk = k!\} f := f * k \{f = k!\}$ (ass)
6. $\{f(k+1) = (k+1)!\} \text{LOOP} \{f = k!\}$ (seq) : 4, 5
7. $(f = k!) \land \neg (k = n) \rightarrow f(k+1) = (k+1)!$ math
8. $\{(f = k!) \land \neg (k = n)\} \text{LOOP} \{f = k!\}$ (cons): 6,7
9. $\{f = k!\} \text{ while} \dots \text{ od} \{(f = k!) \land (k = n)\}$ (loop): 8
10. $\{1 = 0!\} \text{ FACTORIAL} \{(f = k!) \land (k = n)\}$ (seq)
11. TRUE $\rightarrow (1 = 0!)$ (ass)
12. $((f = k!) \land (k = n)) \rightarrow f = n!$ (cons)
13. $\{\text{TRUE}\} \text{ FACTORIAL} \{f = n!\}$ (cons)
10. $\{1, 2, 3\}$ (cons)
10. $\{1, 2, 3\}$ (cons)
10. $\{1, 3, 4\}$ (cons)

1.
$$\{1 = 0!\} f := 1 \{f = 0!\}$$
 (ass)
2. $\{f = 0!\} k := 0 \{f = k!\}$ (ass)
3. $\{1 = 0!\} f := 1; k := 0 \{f = k!\}$ (seq) : 1, 2
4. $\{f(k+1) = (k+1)!\} k := k+1 \{fk = k!\}$ (ass)
5. $\{fk = k!\} f := f * k \{f = k!\}$ (ass)
6. $\{f(k+1) = (k+1)!\} \text{LOOP} \{f = k!\}$ (seq) : 4, 5
7. $(f = k!) \land \neg (k = n) \rightarrow f(k+1) = (k+1)!$ math
8. $\{(f = k!) \land \neg (k = n)\} \text{LOOP} \{f = k!\}$ (cons): 6,7
9. $\{f = k!\}$ while ... od $\{(f = k!) \land (k = n)\}$ (loop): 8
10. $\{1 = 0!\} \text{FACTORIAL} \{(f = k!) \land (k = n)\}$ (seq)
11. TRUE $\rightarrow (1 = 0!)$ math
12. $((f = k!) \land (k = n)) \rightarrow f = n!$ math
13. $\{\text{TRUE}\} \text{FACTORIAL} \{f = n!\}$ (cons):
10. $\{1 = 0!\} \text{FACTORIAL} \{f = n!\}$

1.
$$\{1 = 0!\} f := 1 \{f = 0!\}$$
 (ass)
2. $\{f = 0!\} k := 0 \{f = k!\}$ (ass)
3. $\{1 = 0!\} f := 1; k := 0 \{f = k!\}$ (seq) : 1,2
4. $\{f(k+1) = (k+1)!\} k := k+1 \{fk = k!\}$ (ass)
5. $\{fk = k!\} f := f * k \{f = k!\}$ (ass)
6. $\{f(k+1) = (k+1)!\} \text{LOOP} \{f = k!\}$ (seq) : 4,5
7. $(f = k!) \land \neg (k = n) \rightarrow f(k+1) = (k+1)!$ math
8. $\{(f = k!) \land \neg (k = n)\} \text{LOOP} \{f = k!\}$ (cons): 6,7
9. $\{f = k!\} \text{ while} \dots \text{ od} \{(f = k!) \land (k = n)\}$ (loop): 8
10. $\{1 = 0!\} \text{FACTORIAL} \{(f = k!) \land (k = n)\}$ (seq)
11. TRUE $\rightarrow (1 = 0!)$ math
12. $((f = k!) \land (k = n)) \rightarrow f = n!$ math
13. $\{\text{TRUE}\} \text{FACTORIAL} \{f = n!\}$ (cons):
10.11.12

Example

f := 1; k := 0;while $\neg(k = n)$ do k := k + 1; f := f * kod {TRUE}

Example

f := 1; k := 0;while $\neg(k = n)$ do k := k + 1; f := f * kod

{TRUE} $\{1 = 0!\}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - つへぐ

Example

f := 1; k := 0;while $\neg(k = n)$ do k := k + 1;

$$f := f * k$$
od

 $\{ TRUE \}$ $\{ 1 = 0! \}$ $\{ f = 0! \}$ $\{ f = k! \}$ $\{ (f = k!) \land \neg (k = n) \}$ $\{ f(k + 1) = (k + 1)! \}$ $\{ fk = k! \}$ $\{ f = k! \}$ $\{ (f = k!) \land (k = n) \}$ $\{ f = n! \}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

Example

f := 1;k := 0;while $\neg(k = n)$ do

$$k := k + 1;$$
$$f := f * k$$
od

$$\{T_{RUE}\} \\ \{1 = 0!\} \\ \{f = 0!\} \\ \{f = k!\} \\ \{(f = k!) \land \neg (k = n)\} \\ \{f(k+1) = (k+1)\} \\ \{fk = k!\} \\ \{fk = k!\} \\ \{(f = k!) \land (k = n)\} \\ \{f = n!\} \\ \{f = n!\} \}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Example

f := 1; k := 0;while $\neg(k = n)$ do

k := k + 1;f := f * kod $\{TRUE\} \\ \{1 = 0!\} \\ \{f = 0!\} \\ \{f = k!\} \\ \{(f = k!) \land \neg (k = n)\} \\ \{f(k + 1) = (k + 1)\} \\ \{f(k + 1) = (k + 1)\} \\ \{fk = k\} \\ \{f = k\} \\ \{(f = k!) \land (k = n)\} \\ \{f = n\} \\ \{f = n\} \}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

Example

f := 1; k := 0;while $\neg(k = n)$ do

k := k + 1;f := f * kod $\{TRUE\} \\ \{1 = 0!\} \\ \{f = 0!\} \\ \{f = k!\} \\ \{(f = k!) \land \neg (k = n)\} \\ \{f(k + 1) = (k + 1)!\} \\ \{f(k + 1) = (k + 1)!\} \\ \{f_k = k!\} \\ \{(f = k!) \land (k = n)\} \\ \{f = n!\} \}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

Example

f := 1; k := 0;while $\neg(k = n)$ do k := k + 1; f := f * kod

$$\{T_{RUE}\}$$

$$\{1 = 0!\}$$

$$\{f = 0!\}$$

$$\{f = k!\}$$

$$\{(f = k!) \land \neg (k = n)\}$$

$$\{f(k + 1) = (k + 1)!\}$$

$$\{fk = k!\}$$

$$\{fk = k!\}$$

$$\{f = k!\}$$

$$\{f = n\}$$

・ロ・・西・・ヨ・・日・ うらう

Example

f := 1; k := 0;while $\neg(k = n)$ do k := k + 1; f := f * kod

$$\{TRUE\} \\ \{1 = 0!\} \\ \{f = 0!\} \\ \{f = k!\} \\ \{(f = k!) \land \neg (k = n)\} \\ \{f(k + 1) = (k + 1)!\} \\ \{fk = k!\} \\ \{fk = k!\} \\ \{f = k!\} \\ \{(f = k!) \land (k = n)\} \\ \{f = n!\} \}$$

・ロ・・日・・日・・日・ うへぐ

Example

f := 1; k := 0;while $\neg(k = n)$ do k := k + 1; f := f * kod

$$\{T_{RUE}\}$$

$$\{1 = 0!\}$$

$$\{f = 0!\}$$

$$\{f = k!\}$$

$$\{(f = k!) \land \neg (k = n)\}$$

$$\{f(k + 1) = (k + 1)!\}$$

$$\{fk = k!\}$$

$$\{f = k!\}$$

$$\{f = k!\}$$

$$\{(f = k!) \land (k = n)\}$$

$$\{f = n\}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Example

f := 1; k := 0;while $\neg(k = n)$ do k := k + 1; f := f * kod

$$\{T_{RUE}\}$$

$$\{1 = 0!\}$$

$$\{f = 0!\}$$

$$\{f = k!\}$$

$$\{(f = k!) \land \neg (k = n)\}$$

$$\{f(k + 1) = (k + 1)!\}$$

$$\{fk = k!\}$$

$$\{fk = k!\}$$

$$\{f = k!\}$$

$$\{(f = k!) \land (k = n)\}$$

$$\{f = n!\}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣�?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- $\bullet \ \mathcal{L}: \ A \ simple \ imperative \ programming \ language$
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Recall

If R and S are binary relations, then the **relational composition** of R and S, R; S is the relation:

 $R; S := \{(a, c) : \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$

If $R \subseteq A \times B$ is a relation, and $X \subseteq A$, then the **image of** X **under** R, R(X) is the subset of B defined as:

 $R(X) := \{ b \in B : \exists a \text{ in} X \text{ such that } (a, b) \in R \}.$

Informal semantics

Hoare logic gives a proof of $\{\varphi\} P \{\psi\}$, that is: $\vdash \{\varphi\} P \{\psi\}$ (axiomatic semantics)

How do we determine when $\{\varphi\} P \{\psi\}$ is valid, that is: $\models \{\varphi\} P \{\psi\}$?

If φ holds in a state of some computational model then ψ holds in the state reached after a successful execution of P.

Informal semantics

Hoare logic gives a proof of $\{\varphi\} P \{\psi\}$, that is: $\vdash \{\varphi\} P \{\psi\}$ (axiomatic semantics)

How do we determine when $\{\varphi\} P \{\psi\}$ is valid, that is: $\models \{\varphi\} P \{\psi\}$?

If φ holds in a state of some computational model then ψ holds in the state reached after a successful execution of P.

What is a program?

A partial function mapping system states to system states

What is a program?

A partial function mapping system states to system states

What is a program?

A partial function mapping system states to system states

What is a program?

A relation between system states

What is a state of a computational model?

Two approaches:

Concrete: from a physical perspective.

Abstract: from a mathematical perspective

What is a state of a computational model?

Two approaches:

- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.Store of variables and the values associated with them

• Abstract: from a mathematical perspective

- The pre-/postcondition predicates hold in a state
- ⇒ States are **logical interpretations** (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols

- ⇒ States are fully determined by **environments**
- \Rightarrow States are functions that map variables to values

What is a state of a computational model?

Two approaches:

- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them
- Abstract: from a mathematical perspective
 - The pre-/postcondition predicates hold in a state
 - ⇒ States are **logical interpretations** (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols

- \Rightarrow States are fully determined by **environments**
- \Rightarrow States are functions that map variables to values

What is a state of a computational model?

Two approaches:

- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them
- Abstract: from a mathematical perspective
 - The pre-/postcondition predicates hold in a state
 - \Rightarrow States are **logical interpretations** (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols
 - ⇒ States are fully determined by **environments**
 - \Rightarrow States are functions that map variables to values

What is a state of a computational model?

Two approaches:

- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them
- Abstract: from a mathematical perspective
 - The pre-/postcondition predicates hold in a state
 - \Rightarrow States are **logical interpretations** (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols

- \Rightarrow States are fully determined by **environments**
- \Rightarrow States are functions that map variables to values

What is a state of a computational model?

Two approaches:

- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them
- Abstract: from a mathematical perspective
 - The pre-/postcondition predicates hold in a state
 - ⇒ States are **logical interpretations** (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols
 - \Rightarrow States are fully determined by **environments**
 - \Rightarrow States are functions that map variables to values

Informal semantics: States and Programs

Informal semantics: States and Programs

Semantics for ${\cal L}$

An **environment** or **state** is a function from variables to numeric values. We denote by $E_{\rm NV}$ the set of all environments.

NB

An environment, η , assigns a numeric value $\llbracket e \rrbracket^{\eta}$ to all expressions e, and a boolean value $\llbracket b \rrbracket^{\eta}$ to all boolean expressions b.

Given a program P of \mathcal{L} , we define $\llbracket P \rrbracket$ to be a **binary relation** on ENV in the following manner...

Semantics for ${\cal L}$

An **environment** or **state** is a function from variables to numeric values. We denote by $E_{\rm NV}$ the set of all environments.

NB

An environment, η , assigns a numeric value $\llbracket e \rrbracket^{\eta}$ to all expressions e, and a boolean value $\llbracket b \rrbracket^{\eta}$ to all boolean expressions b.

Given a program P of \mathcal{L} , we define $\llbracket P \rrbracket$ to be a **binary relation** on ENV in the following manner...

Assignment

$(\eta, \eta') \in \llbracket x := e \rrbracket$ if, and only if $\eta' = \eta [x \mapsto \llbracket e \rrbracket^{\eta}]$

Assignment: [z := 2]

$\llbracket P; Q \rrbracket = \llbracket P \rrbracket; \llbracket Q \rrbracket$

where, on the RHS, ; is relational composition.

Conditional, first attempt

[if b then P else Q fi] =
$$\begin{cases} [P] & \text{if } [b]^{\eta} = \text{true} \\ [Q] & \text{otherwise.} \end{cases}$$

Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of ENV:

 $\langle b \rangle = \{ \eta \ : \ \llbracket b \rrbracket^\eta = \texttt{true} \}$

This can be extended to a binary relation (i.e. a program):

 $\llbracket b \rrbracket = \{ (\eta, \eta) : \eta \in \langle b \rangle \}$

Intuitively, b corresponds to the program

if b then skip else ot fi

Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of ENV:

 $\langle b \rangle = \{ \eta \ : \ \llbracket b \rrbracket^\eta = \texttt{true} \}$

This can be extended to a binary relation (i.e. a program):

 $\llbracket b \rrbracket = \{ (\eta, \eta) : \eta \in \langle b \rangle \}$

Intuitively, b corresponds to the program

if b then skip else \perp fi

Conditional, better attempt

[[if *b* then *P* else *Q* fi]] = $[[b; P]] \cup [\neg b; Q]$

while b do P od

- Do 0 or more executions of P while b holds
- Terminate when *b* does not hold

How to do "0 or more" executions of (b; P)?

while b do P od

- Do 0 or more executions of (*b*; *P*)
- Terminate with an execution of $\neg b$

How to do "0 or more" executions of (b; P)?

While

while b do P od

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Do 0 or more executions of (*b*; *P*)
- Terminate with an execution of $\neg b$

How to do "0 or more" executions of (b; P)?

Transitive closure

Given a binary relation $R \subseteq E \times E$, the *transitive closure of* R, R^* is defined to be the limit of the sequence

 $R^0 \cup R^1 \cup R^2 \cdots$

where

- $R^0 = \Delta$, the diagonal relation
- $R^{n+1} = R^n; R$

NB

- R* is the smallest transitive relation which contains R
- Related to the Kleene star operation seen in languages: Σ^*

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Technically, R^* is the **least-fixed point** of $f(X) = X \cup X$; R

Transitive closure

Given a binary relation $R \subseteq E \times E$, the *transitive closure of* R, R^* is defined to be the limit of the sequence

 $R^0 \cup R^1 \cup R^2 \cdots$

where

- $R^0 = \Delta$, the diagonal relation
- $R^{n+1} = R^n; R$

NB

- R* is the smallest transitive relation which contains R
- Related to the Kleene star operation seen in languages: Σ^*

(ロ) (四) (三) (三) (三) (○)

Technically, R^* is the **least-fixed point** of $f(X) = X \cup X$; R

$\llbracket while \ b \ do \ P \ od \rrbracket = \llbracket b; P \rrbracket^*; \llbracket \neg b \rrbracket$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Do 0 or more executions of (*b*; *P*)
- Conclude with an execution of $\neg b$

A Hoare triple is **valid**, written $\models \{\varphi\} P \{\psi\}$ if

 $\llbracket P \rrbracket (\langle \varphi \rangle) \subseteq \langle \psi \rangle.$

That is, the relational image under $[\![P]\!]$ of the set of states where φ holds is contained in the set of states where ψ holds.

