
7. Parameter Treewidth

COMP6741: Parameterized and Exact Computation

Serge Gaspers

19T3

Contents

1 Algorithms for trees 1

2 Tree decompositions 1

3 Monadic Second Order Logic 3

4 Dynamic Programming over Tree Decompositions 5
4.1 SAT . 6
4.2 CSP . 7

5 Further Reading 7

1 Algorithms for trees

Exercise
Recall: An independent set of a graph G = (V,E) is a set of vertices S ⊆ V such that G[S] has no edge.

#Independent Sets on Trees

Input: A tree T = (V,E)
Output: The number of independent sets of T .

• Design a polynomial time algorithm for #Independent Sets on Trees

Exercise
Recall: A dominating set of a graph G = (V,E) is a set of vertices S ⊆ V such that NG[S] = V .

#Dominating Sets on Trees

Input: A tree T = (V,E)
Output: The number of dominating sets of T .

• Design a polynomial time algorithm for #Dominating Sets on Trees

2 Tree decompositions

Algorithms using graph decompositions

1

how to parameterize (2)

Decompositions

• Idea: decompose the problem
into subproblems, and
combine solutions to
subproblems to a global
solution

• Parameter: overlap between
subproblems

• Induced width or treewidth of
constraints networks [Dechter,
Pearl ’89]

• hypertree width [Gottlob, Leone,
Scarchello ‘02]

15

Idea: decompose the problem into sub-
problems and combine solutions to sub-
problems to a global solution.

Parameter: overlap between subprob-
lems.

Tree decompositions (by example)

• A graph G

a

b

c d

e
ff

h

g

i
j

k

• A tree decomposition of G

a, b, ca, b, c d, e, f d, f, h

f, g

d, e, f d, f , h

f, g

c, d, e h, i

i, j

i, k

Conditions: covering and connectedness.

Tree decomposition (more formally)

• Let G be a graph, T a tree, and γ a labeling of the vertices of T by sets of vertices of G.

• We refer to the vertices of T as “nodes”, and we call the sets γ(t) “bags”.

• The pair (T, γ) is a tree decomposition of G if the following three conditions hold:

1. For every vertex v of G there exists a node t of T such that v ∈ γ(t).

2. For every edge vw of G there exists a node t of T such that v, w ∈ γ(t) (“covering”).

3. For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1 to t3, then γ(t1) ∩ γ(t3) ⊆ γ(t2)
(“connectedness”).

Treewidth

• The width of a tree decomposition (T, γ) is defined as the maximum |γ(t)| − 1 taken over all nodes t of T .

• The treewidth tw(G) of a graph G is the minimum width taken over all its tree decompositions.

2

Basic Facts

• Trees have treewidth 1.

• Cycles have treewidth 2.

• Consider a tree decomposition (T, γ) of a graph G and two adjacent nodes i, j in T . Let Ti and Tj denote
the two trees obtained from T by deleting the edge ij, such that Ti contains i and Tj contains j. Then, every
vertex contained in both

⋃
a∈V (Ti)

γ(a) and
⋃

b∈V (Tj)
γ(b) is also contained in γ(i) ∩ γ(j).

• The complete graph on n vertices has treewidth n− 1.

• If a graph G contains a clique Kr, then every tree decomposition of G contains a node t such that Kr ⊆ γ(t).

Complexity of Treewidth

Treewidth
Input: Graph G = (V,E), integer k
Parameter: k
Question: Does G have treewidth at most k?

• Treewidth is NP-complete.

• Treewidth is FPT: there is a kO(k3) · |V | time algorithm [Bod96]

Easy problems for bounded treewidth

• Many graph problems that are polynomial time solvable on trees are FPT with parameter treewdith.

• Two general methods:

– Dynamic programming : compute local information in a bottom-up fashion along a tree decomposition

– Monadic Second Order Logic: express graph problem in some logic formalism and use a meta-algorithm

3 Monadic Second Order Logic

Monadic Second Order Logic

• Monadic Second Order (MSO) Logic is a powerful formalism for expressing graph properties. One can
quantify over vertices, edges, vertex sets, and edge sets.

• Courcelle’s theorem [Cour.celle90]. Checking whether a graph G satisfies an MSO property is FPT
parameterized by the treewidth of G plus the length of the MSO expression.

• Arnborg et al.’s generalizations [ALS91].

– FPT algorithm for parameter tw(G) + |φ(X)| that takes as input a graph G and an MSO sentence φ(X)
where X is a free (non-quantified) vertex set variable, that computes a minimum-sized set of vertices X
such that φ(X) is true in G.

– Also, the input vertices and edges may be colored and their color can be tested.

3

Elements of MSO
An MSO formula has

• variables representing vertices (u, v, . . .), edges (a, b, . . .), vertex subsets (X,Y, . . .), or edge subsets (A,B, . . .)
in the graph

• atomic operations

– u ∈ X: testing set membership

– X = Y : testing equality of objects

– inc(u, a): incidence test “is vertex u an endpoint of the edge a?”

• propositional logic on subformulas: φ1 ∧ φ2, φ1 ∨ φ2, ¬φ1, φ1 ⇒ φ2

• Quantifiers: ∀X ⊆ V , ∃A ⊆ E, ∀u ∈ V , ∃a ∈ E, etc.

Shortcuts in MSO
We can define some shortcuts

• u 6= v is ¬(u = v)

• X ⊆ Y is ∀v ∈ V. (v ∈ X)⇒ (v ∈ Y)

• ∀v ∈ X ϕ is ∀v ∈ V. (v ∈ X)⇒ ϕ

• ∃v ∈ X ϕ is ∃v ∈ V. (v ∈ X) ∧ ϕ

• adj(u, v) is (u 6= v) ∧ ∃a ∈ E. (inc(u, a) ∧ inc(v, a))

MSO Logic Example
Example: 3-Coloring,

• “there are three independent sets in G = (V,E) which form a partition of V ”

•

3COL := ∃R ⊆ V. ∃G ⊆ V. ∃B ⊆ V.
partition(R,G,B)

∧ independent(R) ∧ independent(G) ∧ independent(B),

where

partition(R,G,B) := ∀v ∈ V. ((v ∈ R ∧ v /∈ G ∧ v /∈ B)

∨ (v /∈ R ∧ v ∈ G ∧ v /∈ B) ∨ (v /∈ R ∧ v /∈ G ∧ v ∈ B))

and

independent(X) := ¬(∃u ∈ X. ∃v ∈ X. adj(u, v))

By Courcelle’s theorem and our 3COL MSO formula, we have:

Theorem 1. 3-Coloring is FPT with parameter treewidth.

Treewidth only for graph problems?
Let us use treewidth to solve a Logic Problem

• associate a graph with the instance

• take the tree decomposition of the graph

• most widely used: primal graphs, incidence graphs, and dual graphs of formulas.

4

Three Treewidth Parameters
CNF Formula F = C ∧D ∧ E ∧ G ∧H where C = (u ∨ v ∨ ¬y), D = (¬u ∨ z ∨ y), E = (¬v ∨ w), G = (¬w ∨ x),
H = (x ∨ y ∨ ¬z).

y

u

v

w

x

z

primal graph

D

H

G E

C

dual graph

D
z

H

x

G
w

E

v

C

u

y

incidence graph

This gives rise to parameters primal treewidth, dual treewidth, and incidence treewidth.

Definition 2. Let F be a CNF formula with variables var(F) and clauses cla(F). The primal graph of F is the
graph with vertex set var(F) where two variables are adjacent if they appear together in a clause of F . The dual
graph of F is the graph with vertex set cla(F) where two clauses are adjacent if they have a variable in common.
The incidence graph of F is the bipartite graph with vertex set var(F) ∪ cla(F) where a variable and a clause are
adjacent if the variable appears in the clause. The primal treewidth, dual treewidth, and incidence treewidth of F is
the treewidth of the primal graph, the dual graph, and the incidence graph of F , respectively.

Incidence treewidth is most general

Lemma 3. The incidence treewidth of F is at most the primal treewidth of F plus 1.

Proof. Start from a tree decomposition (T, γ) of the primal graph with minimum width. For each clause C:

• There is a node t of T with var(C) ⊆ γ(t), since var(C) is a clique in the primal graph.

• Add to t a new neighbor t′ with γ(t′) = γ(t) ∪ {C}.

Lemma 4. The incidence treewidth of F is at most the dual treewidth of F plus 1.

Primal and dual treewidth are incomparable.

• One big clause alone gives large primal treewidth.

• {{x, y1}, {x, y2}, . . . , {x, yn}} gives large dual treewidth.

SAT parameterized by treewidth

Sat
Input: A CNF formula F
Question: Is there an assignment of truth values to var(F) such that F evaluates to true?

Note: If Sat is FPT parameterized by incidence treewidth, then Sat is FPT parameterized by primal treewidth
and by dual treewidth.

SAT is FPT for parameter incidence treewidth
CNF Formula F = C ∧D ∧ E ∧ G ∧H where C = (u ∨ v ∨ ¬y), D = (¬u ∨ z ∨ y), E = (¬v ∨ w), G = (¬w ∨ x),
H = (x ∨ y ∨ ¬z)

Auxiliary graph:

¬u u ¬v v ¬w w ¬x x ¬y y ¬z z

C D E G H

• MSO Formula: “There exists an independent set of literal vertices that dominates all the clause vertices.”

• The treewidth of the auxilary graph is at most twice the treewidth of the incidence graph plus one.

5

FPT via MSO

Theorem 5. Sat is FPT for each of the following parameters: primal treewidth, dual treewidth, and incidence
treewidth.

4 Dynamic Programming over Tree Decompositions

Coucelle’s theorem: discussion
Advantages of Courcelle’s theorem:

• general, applies to many problems

• easy to obtain FPT results

Drawback of Courcelle’s theorem

• the resulting running time depends non-elementarily on the treewidth t and the length ` of the MSO-sentence,
i.e., a tower of 2’s whose height is ω(1)

22
2
. .

.
t+`

Dynamic progamming over tree decompositions
Idea: extend the algorithmic methods that work for trees to tree decompositions.

Step 1 Compute a minumum width tree decomposition using Bodlaender’s algorithm

Step 2 Transform it into a standard form making computations easier

Step 3 Bottom-up Dynamic Programming (from the leaves of the tree decomposition to the root)

Nice tree decomposition
A nice tree decomposition (T, γ) has 4 kinds of bags:

• leaf node: leaf t in T and |γ(t)| = 1

• introduce node: node t with one child t′ in T and γ(t) = γ(t′) ∪ {x}

• forget node: node t with one child t′ in T and γ(t) = γ(t′) \ {x}

• join node: node t with two children t1, t2 in T and γ(t) = γ(t1) = γ(t2)

Every tree decomposition of width w of a graph G on n vertices can be transformed into a nice tree decomposition
of width w and O(w · n) nodes in polynomial time [Klo94].

4.1 SAT

Dynamic programming: primal treewidth

• Compute a nice tree decomposition (T, γ) of F ’s primal graph with minimum width [Bod96; Klo94]

• Select an arbitary root r of T

• Denote Tt the subtree of T rooted at t

• Denote γ↓(t) = {x ∈ γ(t′) : t′ ∈ V (Tt)}

• Denote F↓(t) = {C ∈ F : var(C) ⊆ γ↓(t)}

• For a node t and an assignment τ : γ(t)→ {0, 1}, define

sat(t, τ) =


1 if τ can be extended to a

satisfying assignment of F↓(t)

0 otherwise.

6

Denote x1 = x and x0 = ¬x. We will view F as a set of clauses and each clause as a set of literals; e.g.
F = {{x,¬y}, {¬x, y, z}} instead of F = (x ∨ ¬y) ∧ (¬x ∨ y ∨ z)

• leaf node: sat(t, {x = a}) =

{
1 if {x1−a} /∈ F
0 otherwise

• introduce node: γ(t) = γ(t′) ∪ {x}.

sat(t, {x = a} ∪ {xi = ai}i) = sat(t′, {xi = ai}i)
∧ @C ∈ F : C ⊆ {x1−a} ∪ {x1−ai

i }i.

• forget node: γ(t) = γ(t′) \ {x}.

sat(t, {xi = ai}i) = sat(t′, {x = 0} ∪ {xi = ai}i)
∨ sat(t′, {x = 1} ∪ {xi = ai}i).

• join node:

sat(t, {xi = ai}i) = sat(t1, {xi = ai}i)
∧ sat(t2, {xi = ai}i).

• Finally: F is satisfiable iff ∃τ : γ(r)→ {0, 1} such that sat(r, τ) = 1

• Running time: O∗(2k), where k is the primal treewidth of F , assuming we are given a minimum width tree
decomposition

• Also extends to computing the number of satisfying assignments

Direct Algorithms
Known treewidth based algorithms for Sat:

k = primal tw k = dual tw k = incidence tw

O∗(2k) O∗(2k) O∗(4k)

• It is still worth considering primal treewidth and dual treewidth.

• These algorithms all count the number of satisfying assignments.

4.2 CSP

Constraint Satisfaction Problem

CSP
Input: A set of variables X, a domain D, and a set of constraints C
Question: Is there an assignment τ : X → D satisfying all the constraints in C?

A constraint has a scope S = (s1, . . . , sr) with si ∈ X, i ∈ {1, . . . , r}, and a constraint relation R consisting of r-
tuples of values in D. An assignment τ : X → D satisfies a constraint c = (S,R) if there exists a tuple (d1, . . . , dr)
in R such that τ(si) = di for each i ∈ {1, . . . , r}.

Bounded Treewidth for Constraint Satisfaction

• Primal, dual, and incidence graphs are defined similarly as for Sat.

Theorem 6 ([GSS02]). CSP is FPT for parameter primal treewidth if |D| = O(1).

• What if domains are unbounded?

7

Unbounded domains

Theorem 7. CSP is W[1]-hard for parameter primal treewidth.

Proof Sketch. Parameterized reduction from Clique. Let (G = (V,E), k) be an instance of Clique. Take k
variables x1, . . . , xk, each with domain V . Add

(
k
2

)
binary constraints Ei,j , 1 ≤ i < j ≤ k. A constraint Ei,j has

scope (xi, xj) and its constraint relation contains the tuple (u, v) if uv ∈ E. The primal treewidth of this CSP
instance is k − 1.

5 Further Reading

• Chapter 7, Treewidth in [Cyg+15]

• Chapter 5, Treewidth in [FK10]

• Chapter 10, Tree Decompositions of Graphs in [Nie06]

• Chapter 10, Treewidth and Dynamic Programming in [DF13]

• Chapter 13, Courcelle’s Theorem in [DF13]

References

[ALS91] Stefan Arnborg, Jens Lagergren, and Detlef Seese. “Easy problems for tree-decomposable graphs”. In:
Journal of Algorithms 12.2 (1991), pp. 308–340.

[Bod96] Hans L. Bodlaender. “A linear-time algorithm for finding tree-decompositions of small treewidth”. In:
25.6 (1996), pp. 1305–1317.

[Cyg+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Micha l Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.

[FK10] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.

[GSS02] Georg Gottlob, Francesco Scarcello, and Martha Sideri. “Fixed-parameter complexity in AI and non-
monotonic reasoning”. In: Journal of Artificial Intelligence 138.1-2 (2002), pp. 55–86.

[Klo94] Ton Kloks. Treewidth: Computations and Approximations. Berlin: Springer, 1994.

[Nie06] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.

8

	Algorithms for trees
	Tree decompositions
	Monadic Second Order Logic
	Dynamic Programming over Tree Decompositions
	SAT
	CSP

	Further Reading

