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1. Affine transformations

An affine transformation on the plane is a mapping T that preserves collinearity and ratios of distances: given two points
A and B, if C is the middle of the segment [A,B] then T (C) is the middle of the segment [T (A), T (B)]. Translations,
contractions, expansions, reflections, rotations, are all particular cases of affine transformations. In general, an affine
transformation T maps a point (x, y) to a point (x′, y′) such that(

x′

y′

)
=

(
a b
c d

)(
x
y

)
+

(
e
f

)
for some reals a, b, c, d, e and f , that is:

x′ = ax+ by + e

y′ = cx+ dy + f

In other words, T is the composition of a linear transformation with coefficients a, b, c and d, and a translation with
coefficients e and f .

T is totally determined by the image of three noncollinear points P1, P2 and P3. Indeed, set P1 = (x1, y1), P2 = (x2, y2),
P3 = (x3, y3), T (P1) = (x′1, y

′
1), T (P2) = (x′2, y

′
2) and T (P3) = (x′3, y

′
3). Then a, b and e are the solutions of the system of

equations

x1a+ y1b+ e = x′1

x2a+ y2b+ e = x′2

x3a+ y3b+ e = x′3

and c, d and f are the solutions of the system of equations

x1c+ y1d+ f = y′1

x2c+ y2d+ f = y′2

x3c+ y3d+ f = y′3

Both systems of equation have a unique solution iff ∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ 6= 0

which is equivalent, since a determinant does not change if one line is subtracted from another line, to∣∣∣∣∣∣
x1 y1 1

x2 − x1 y2 − y1 0
x3 − x1 y3 − y1 0

∣∣∣∣∣∣ 6= 0

which is equivalent to (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1) 6= 0, which is equivalent to y2−y1

x2−x1
6= y3−y1

x3−x1
, that is, P1, P2

and P3 are noncollinear.
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2. Barnsley fern

Barnsley fern is a fractal, a scale invariant part of the plane, resembling the real fern Black Spleenwort, defined from four
affine contractions, that is, affine transformations T such that for all points A and B of the plane, d(T (A), T (B)) < d(A,B).
These transformations are:

• T1, which maps the fern to its yellow part, by projecting all points of the fern on the y-axis before applying a
contraction of factor 0.16, sending the point (x, y) to the point (x′, y′) such that

(
x′

y′

)
=

(
0 0
0 0.16

)(
x
y

)
+

(
0
0

)
• T2, which maps the fern to its green part, by mapping the tip of the fern to itself and the tips of the red and blue

leaflets to the tips of the largest left and right green leaflets, respectively, sending the point (x, y) to the point
(x′, y′) such that (

x′

y′

)
=

(
0.85 0.04
−0.04 0.85

)(
x
y

)
+

(
0

1.6

)
• T3, which maps the fern to its red part, by mapping the bottom of the stem of the fern to the bottom of the stem

of the red leaflet and the tips of the red and blue leaflets to the tips of the largest left and right leaflets of the red
leaflet, respectively, sending the point (x, y) to the point (x′, y′) such that

(
x′

y′

)
=

(
0.2 −0.26
0.23 0.22

)(
x
y

)
+

(
0

1.6

)
• T4, which maps the fern to its blue part, by mapping the bottom of the stem of the fern to the bottom of the

stem of the blue leaflet and the tips of the red and blue leaflets to the tips of the largest left and right leaflets of
the blue leaflet, respectively, sending the point (x, y) to the point (x′, y′) such that

(
x′

y′

)
=

(
−0.15 0.28
0.26 0.24

)(
x
y

)
+

(
0

0.44

)
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3. Banach’s fixed point theorem

Denote by d the distance between two points of the plane, R2. An iterated function system (IFS) is a finite sequence of
contracting affine transformations.

If F is the set of points that make up Barnsley fern, then T1〈F 〉 ∪ T2〈F 〉 ∪ T3〈F 〉 ∪ T4〈F 〉 = F , capturing the fact that
Barnsley fern is the attractor of the IFS (T1, T2, T3, T4) defined in the previous section: it is the unique fixed point of the
operator T that maps a compact subsetX of R2, that is, a bounded closed subsetX of R2, to T1〈X〉∪T2〈X〉∪T3〈X〉∪T4〈X〉.
The existence and unicity of F follows from Banach’s fixed point theorem:

Let K be a complete metric space and let T : K → K be a contraction. Then T has a unique fixed point.
Moreover, for all points X in K, Tn(X) converges to this fixed point when n tends towards infinity.

To apply the theorem, we take for K the set of compact subsets of R2 and for the distance between two members of K,
the Hausdorff distance dH : given two compact subsets X1 and X2 of R2, the Hausdorff distance between X1 and X2 is
the least real number δ such that every point in X1 is at a distance of at most δ of some point in X2, and every point in
X2 is at a distance of at most δ of some point in X1:

dH(X1, X2) = max
(

max
x1∈X1

min
x2∈X2

d(x1, x2), max
x2∈X2

min
x1∈X1

d(x1, x2)
)

For the theorem to apply, we need to verify that if (T1, . . . , Tn) is an IFS, then the function T that maps a compact
subset X of R2 to T1〈X〉 ∪ · · · ∪ Tn〈X〉 is a contraction. It suffices to show the following: if for all i ∈ {1, . . . , n}, Ti has a
contraction factor of ri ∈ [0, 1), then T has a contraction factor equal to max(r1, . . . , rn), that is: if for all i ∈ {1, . . . , n}
and members x1 and x2 of R, d(Ti(x1), Ti(x2)) is at most equal to rid(x1, x2) then for all compact subsets X1 and X2 of
R2, dH(T (X1), T (X2)) is at most equal to max(r1, . . . , rn)dH(X1, X2). This follows from the two lemmas that follow.

Lemma 1. Let T be an affine contraction and r ∈ [0, 1) be a contraction factor for T . Then the mapping, still denoted
T , that maps a compact subset X of R2 to {T (x) | x ∈ X} is a contraction of contraction factor r.

Proof. Let X1 and X2 be two compact subsets of R2. It suffices to show that dH(T (X1), T (X2)) ≤ rdH(X1, X2), that is: for
all u ∈ X1, minx2∈X2

d(T (u), T (x2)) ≤ rdH(X1, X2). Let u ∈ X1 be given. Since for all v ∈ X2, d(T (u), T (v)) ≤ rd(u, v),
it follows that for all v ∈ X2, minx2∈X2

d(T (u), T (x2)) ≤ rd(u, v), hence

min
x2∈X2

d(T (u), T (x2)) ≤ r min
x2∈X2

d(u, x2)) ≤ r max
x1∈X1

min
x2∈X2

d(x1, x2) ≤ rdH(X1, X2),

and we are done. �

Lemma 2. Let A, B, C and D be compact subsets of R2. Then dH(A ∪B,C ∪D) ≤ max(dH(A,C), dH(B,D)).

Proof. It suffices to show that dH(A∪B,C ∪D) ≤ dH(A,C) or dH(A∪B,C ∪D) ≤ dH(B,D), that is: for all u ∈ A∪B,
miny∈C∪D d(u, y) ≤ dH(A,C) or miny∈C∪D d(u, y) ≤ dH(B,D). Let u ∈ A ∪ B be given. Since C ∪ D is compact,
let v ∈ C ∪ D be such that d(u, v) = miny∈C∪D d(u, y). So d(u, v) ≤ miny∈C d(u, y) and d(u, v) ≤ miny∈D d(u, y).
Moreover, either u ∈ A, in which case miny∈C d(u, y) ≤ maxx∈A miny∈C d(x, y) = dH(A,C), or u ∈ B, in which case
miny∈D d(u, y) ≤ maxx∈B miny∈D d(x, y) = dH(B,D), and we are done. �

Let us now prove Banach’s fixed point theorem, denoting by d the distance on the complete metric space K, and by
r the contraction factor of T . For unicity, assume for a contradiction that X1 and X2 are two distinct fixed points
of T . Then T (X1) − T (X2) = X2 − X1, so d(T (X1), T (X2)) = d(X1, X2) 6= 0. Moreover, since T is a contraction,
d(T (X1), T (X2)) ≤ rd(X1, X2) for some r ∈ [0, 1); contradiction indeed. Let X0 be a member of K and for all n ∈ N, set
Xn+1 = T (Xn). To complete the proof, it suffices to show that (Xn)n∈N converges to a member X of K, and that X is a
fixed point of T . If X1 = X0 then we are done, so suppose otherwise. As K is complete, in order to show that (Xn)n∈N
converges, it suffices to verify that (Xn)n∈N is a Cauchy sequence, that is: for all ε > 0, there exists p ∈ N such that for
m > p and n > m, d(Xn, Xm) < ε. First note that for all n ≥ 1, d(Xn+1, Xn) = d(T (Xn), T (Xn−1)) ≤ rd(Xn, Xn−1), so
for all n ∈ N, d(Xn+1, Xn) ≤ rnd(X1, X0). Then note that for all m ∈ N and n > m,

d(Xn, Xm) = d((Xn, Xn−1) + (Xn−1, Xn−2) + · · ·+ (Xm+1, Xm))

≤ d(Xn, Xn−1) + d(Xn−1, Xn−2) + · · ·+ d(Xm+1, Xm)

≤ (rn−1 + rn−2 + · · ·+ rm)d(X1, X0)

≤ rm

1− r
d(X1, X0)
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Since r < 1, this implies that (Xn)n∈N is indeed a Cauchy sequence. Now observe that T is continuous, and actually
uniformly continuous: for all ε > 0 and X,X ′ ∈ K, if d(X,X ′) < ε then d(T (X), T (X ′)) ≤ rd(X,X ′) < rε < ε.
Since T is continuous and (Xn)n∈N converges to some member of K, say X, (T (Xn))n∈N converges to T (X). Then
T (X) = limn→∞ T (Xn) = limn→∞Xn+1 = X, completing the proof of the theorem.

4. Practical application

The fixed point of the contraction T : K → K of Banach’s fixed point theorem can be obtained by successive applications
of T starting from an arbitrary point of K.

Let us see this in action with Sierpinsky triangle, which is obtained from an iterated function system consisting of three
affine contractions, which are the composition of a contraction of factor 0.5, hence a linear transformation defined by the
matrix (

0.5 0
0 0.5

)
and one of the following three translations (taking the lower left corner of the triangle as origin):

• identity (for the lower left subtriangle),
• a translation by (0.5, 0) (for the lower right subtriangle)
• a translation by (0.25, 0.5) (for the top subtriangle)

Here is what is obtained in 4 iterations, starting with the unit square with the origin as lower left corner:
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And here is what is obtained in 4 iterations, starting with some particular part of the unit square:

Any compact subset of R2 can be used as a starting point. It does not have to be included in the unit square; it can
simply be an arbitrary point p of R2—indeed, {p} is compact. Let us consider again Barnsley fern F . If we chose as
starting point an arbitrary point p of R2 that belongs to F , then F is the topological closure of the union of

• {p},
• T1〈{p}〉, T2〈{p}〉, T3〈{p}〉, T4〈{p}〉,
• T1〈T1〈{p}〉〉, T1〈T2〈{p}〉〉, T1〈T3〈{p}〉〉, T1〈T4〈{p}〉〉,
T2〈T1〈{p}〉〉, T2〈T2〈{p}〉〉, T2〈T3〈{p}〉〉, T2〈T4〈{p}〉〉,
T3〈T1〈{p}〉〉, T3〈T2〈{p}〉〉, T3〈T3〈{p}〉〉, T3〈T4〈{p}〉〉,
T4〈T1〈{p}〉〉, T4〈T2〈{p}〉〉, T4〈T3〈{p}〉〉, T4〈T4〈{p}〉〉,

• . . .

In practice, we start from p0 = (0, 0), which is the point at the bottom of the stem of the fern. For all n > 0, we generate
at stage n a point pn, in such a way that for all n > 0,:

• pn+1 is T1(pn) with probability 0.01,
• pn+1 is T2(pn) with probability 0.85,
• pn+1 is T3(pn) with probability 0.07,
• pn+1 is T4(pn) with probability 0.07.
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so that the number of points drawn in the yellow, green, red and blue parts of the fern are in proportion of those
probabilities, respectively.

As for the factor, it is used to appropriately scale the image of the fern.

COMP9021 Principles of Programming


