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Polynomial time

Polynomial-time algorithm

Polynomial-time algorithm:
There exists a constant c ∈ N such that the algorithm has (worst-case)
running-time O(nc), where n is the size of the input.

Example

Polynomial: n; n2 log2 n; n3; n20

Super-polynomial: nlog2 n; 2
√
n; 1.001n; 2n; n!
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Tractable problems

Central Question
Which computational problems have polynomial-time algorithms?
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Million-dollar question

Intriguing class of problems: NP-complete problems.

NP-complete problems

It is unknown whether NP-complete problems have polynomial-time algorithms.

A polynomial-time algorithm for one NP-complete problem would imply
polynomial-time algorithms for all problems in NP.

Gerhard Woeginger’s P vs NP page:
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm
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Polynomial vs. NP-complete

Polynomial

Shortest Path: Given a graph
G, two vertices a and b of G, and
an integer k, does G have a simple
a–b-path of length at most k?

Euler Tour: Given a graph G,
does G have a cycle that traverses
each edge of G exactly once?

2-CNF SAT: Given a
propositional formula F in 2-CNF,
is F satisfiable?
A k-CNF formula is a conjunction
(AND) of clauses, and each clause
is a disjunction (OR) of at most k
literals, which are negated or
unnegated Boolean variables.

NP-complete

Longest Path: Given a graph
G and an integer k, does G have
a simple path of length at least k?

Hamiltonian Cycle: Given a
graph G, does G have a simple
cycle that visits each vertex of G?

3-CNF SAT: Given a
propositional formula F in 3-CNF,
is F satisfiable?
Example:
(x∨¬y∨z)∧ (¬x∨z)∧ (¬y∨¬z).
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Overview

What’s next?

Formally define P, NP, and NP-complete (NPC)

(New) skill: show that a problem is NP-complete
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Decision problems and Encodings

<Name of Decision Problem>

Input: <What constitutes an instance>
Question: <Yes/No question>

We want to know which decision problems can be solved in polynomial time –
polynomial in the size of the input n.

Assume a “reasonable” encoding of the input

Many encodings are polynomial-time equivalent; i.e., one encoding can be
computed from another in polynomial time.

Important exception: unary versus binary encoding of integers.

An integer x takes dlog2 xe bits in binary and x = 2log2 x bits in unary.
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Formal-language framework

We can view decision problems as languages.

Alphabet Σ: finite set of symbols. W.l.o.g., Σ = {0, 1}
Language L over Σ: set of strings made with symbols from Σ: L ⊆ Σ∗

Fix an encoding of instances of a decision problem Π into Σ

Define the language LΠ ⊆ Σ∗ such that

x ∈ LΠ ⇔ x is a Yes-instance for Π
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Non-deterministic Turing Machine (NTM)

input word x ∈ Σ∗ placed on an
infinite tape (memory)

read-write head initially placed on
the first symbol of x

computation step: if the machine is
in state s and reads a, it can move
into state s′, writing b, and moving
the head into direction D ∈ {L,R}
if ((s, a), (s′, b,D)) ∈ δ.

Q: finite, non-empty set of states

Γ: finite, non-empty set of tape
symbols

∈ Γ: blank symbol (the only
symbol allowed to occur on the tape
infinitely often)

Σ ⊆ Γ \ {b}: set of input symbols

q0 ∈ Q: start state

A ⊆ Q: set of accepting (final)
states

δ ⊆ (Q\A×Γ)× (Q×Γ×{L,R}):
transition relation, where L stands
for a move to the left and R for a
move to the right.
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Accepted Language

Definition 1
A NTM accepts a word x ∈ Σ∗ if there exists a sequence of computation steps
starting in the start state and ending in an accept state.

Definition 2
The language accepted by an NTM is the set of words it accepts.
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Video

The LEGO Turing Machine
https://www.youtube.com/watch?v=cYw2ewoO6c4
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Accept and Decide in polynomial time

Definition 3
A language L is accepted in polynomial time by an NTM M if

L is accepted by M , and

there is a constant k such that for any word x ∈ L, the NTM M accepts x in
O(|x|k) computation steps.

Definition 4
A language L is decided in polynomial time by an NTM M if

there is a constant k such that for any word x ∈ L, the NTM M accepts x in
O(|x|k) computation steps, and

there is a constant k′ such that for any word x ∈ Σ∗ \L, on input x the NTM
M halts in a non-accepting state (Q \A) in O(|x|k′

) computation steps.
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Deterministic Turing Machine

Definition 5

A Deterministic Turing Machine (DTM) is a Non-deterministic Turing Machine
where the transition relation contains at most one tuple ((s, a), (·, ·, ·)) for each
s ∈ Q \A and a ∈ Γ.

The transition relation δ can be viewed as a function
δ : Q \A× Γ→ Q× Γ× {L,R}.
⇒ For a given input word x ∈ Σ∗, there is exactly one sequence of computation
steps starting in the start state.
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DTM equivalents

Many computational models are polynomial-time equivalent to DTMs:

Random Access Machine (RAM, used for algorithms in the textbook)

variants of Turing machines (multiple tapes, infinite only in one direction, ...)

...
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P and NP

Definition 6 (P)

P = {L ⊆ Σ∗ : there is a DTM accepting L in polynomial time}

Definition 7 (NP)

NP = {L ⊆ Σ∗ : there is a NTM accepting L in polynomial time}

Definition 8 (coNP)

coNP = {L ⊆ Σ∗ : Σ∗ \ L ∈ NP}
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coP?

Theorem 9

P = {L ⊆ Σ∗ : there is a DTM deciding L in polynomial time}

Proof sketch.
Need to show:
if L is accepted by a DTM M in polynomial time, then there is a DTM that
decides L in polynomial time.
Idea: design a DTM M ′ that simulates M for c · nk steps, where c · nk is the
running time of M .
(Note that this proof is nonconstructive: we might not know the running time of
M .)
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NP and certificates

Non-deterministic choices
A NTM for an NP-language L makes a polynomial number of non-deterministic
choices on input x ∈ L.
We can encode these non-deterministic choices into a certificate c, which is a
polynomial-length word.
Now, there exists a DTM, which, given x and c, verifies that x ∈ L in polynomial
time.

Thus, L ∈ NP iff there is a DTM V and for each x ∈ L there exists a
polynomial-length certificate c such that V (x, c) = 1, but V (y, ·) = 0 for each
y /∈ L.
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CNF-SAT is in NP

A CNF formula is a propositional formula in conjunctive normal form: a
conjunction (AND) of clauses; each clause is a disjunction (OR) of literals;
each literal is a negated or unnegated Boolean variable.

An assignment α : var(F )→ {0, 1} satisfies a clause C if it sets a literal of C
to true, and it satisfies F if it satisfies all clauses in F .

CNF-SAT
Input: CNF formula F
Question: Does F have a satisfying assignment?

Example: (x ∨ ¬y ∨ z) ∧ (¬x ∨ z) ∧ (¬y ∨ ¬z).

Lemma 10
CNF-SAT ∈ NP.

Proof.
Certificate: assignment α to the variables.
Given a certificate, it can be checked in polynomial time whether all clauses are
satisfied.
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Brute-force algorithms for problems in NP

Theorem 11
Every problem in NP can be solved in exponential time.

Proof.

Let Π be an arbitrary problem in NP. [Use certificate-based definition of NP]
We know that ∃ a polynomial p and a polynomial-time verification algorithm V
such that:

for every x ∈ Π (i.e., every Yes-instance for Π) ∃ string c ∈ {0, 1}∗,
|c| ≤ p(|x|), such that V (x, y) = 1, and

for every x /∈ Π (i.e., every No-instance for Π) and every string c ∈ {0, 1}∗,
V (x, c) = 0.

Now, we can prove there exists an exponential-time algorithm for Π with input x:

For each string c ∈ {0, 1}∗ with |c| ≤ p(|x|), evaluate V (x, c) and return
Yes if V (x, c) = 1.

Return No.

Running time: 2p(|x|) · nO(1) ⊆ 2O(2·p(|x|)) = 2O(p(|x|)), but non-constructive.
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Polynomial-time reduction

Definition 12
A language L1 is polynomial-time reducible to a language L2, written L1 ≤P L2,
if there exists a polynomial-time computable function f : Σ∗ → Σ∗ such that for
all x ∈ Σ∗,

x ∈ L1 ⇔ f(x) ∈ L2.

A polynomial time algorithm computing f is a reduction algorithm.
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New polynomial-time algorithms via reductions

Lemma 13
If L1, L2 ∈ Σ∗ are languages such that L1 ≤P L2, then L2 ∈ P implies L1 ∈ P.
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NP-completeness

Definition 14 (NP-hard)

A language L ⊆ Σ∗ is NP-hard if

L′ ≤P L for every L′ ∈ NP.

Definition 15 (NP-complete)

A language L ⊆ Σ∗ is NP-complete (in NPC) if

1 L ∈ NP, and

2 L is NP-hard.
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A first NP-complete problem

Theorem 16
CNF-SAT is NP-complete.

Proved by encoding NTMs into SAT [Coo71; Lev73] and then CNF-SAT [Kar72].
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Proving NP-completeness

Lemma 17

If L is a language such that L′ ≤P L for some L′ ∈ NPC, then L is NP-hard.
If, in addition, L ∈ NP, then L ∈ NPC.

Proof.

For all L′′ ∈ NP, we have L′′ ≤P L′ ≤P L.
By transitivity, we have L′′ ≤P L.
Thus, L is NP-hard.
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Proving NP-completeness (2)

Method to prove that a language L is NP-complete:

1 Prove L ∈ NP
2 Prove L is NP-hard.

Select a known NP-complete language L′.
Describe an algorithm that computes a function f mapping every instance
x ∈ Σ∗ of L′ to an instance f(x) of L.
Prove that x ∈ L′ ⇔ f(x) ∈ L for all x ∈ Σ∗.
Prove that the algorithm computing f runs in polynomial time.
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3-CNF SAT is NP-hard

Theorem 18
3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from
CNF-SAT.
Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F ′

as follows. For each clause C in F :

If C has at most 3 literals, then copy C into F ′.

Otherwise, denote C = (`1 ∨ `2 ∨ · · · ∨ `k). Create k − 3 new variables
y1, . . . , yk−3, and add the clauses
(`1 ∨ `2 ∨ y1), (¬y1 ∨ `3 ∨ y2), (¬y2 ∨ `4 ∨ y3), . . . , (¬yk−3 ∨ `k−1 ∨ `k).

Show that F is satisfiable ⇔ F ′ is satisfiable.
Show that F ′ can be computed in polynomial time (trivial; use a RAM).
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Clique

A clique in a graph G = (V,E) is a subset of vertices S ⊆ V such that every two
vertices of S are adjacent in G.

Clique

Input: Graph G, integer k
Question: Does G have a clique of size k?

Theorem 19
Clique is NP-complete.
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Clique (2)

z

y

¬x

x ¬y ¬z

x

y

(¬x∨ y ∨ z)∧ (x∨¬y ∨¬z)∧ (x∨ y)

Clique is in NP

Let F = C1 ∧ C2 ∧ . . . Ck be a 3-CNF
formula

Construct a graph G that has a clique
of size k iff F is satisfiable

For each clause Cr = (`r1 ∨ · · · ∨ `rw),
1 ≤ r ≤ k, create w new vertices
vr1, . . . , v

r
w

Add an edge between vri and vsj if

r 6= s and

`ri 6= ¬`sj where ¬¬x = x.

Check correctness and polynomial
running time
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1 ≤ r ≤ k, create w new vertices
vr1, . . . , v

r
w

Add an edge between vri and vsj if

r 6= s and

`ri 6= ¬`sj where ¬¬x = x.

Check correctness and polynomial
running time
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Correctness: F has a satisfying
assignment iff G has a clique of size k.

(⇒): Let α be a sat. assignment for F .
For each clause Cr, choose a literal `ri
with α(`ri ) = 1, and denote by sr the
corresponding vertex in G. Now,
{sr : 1 ≤ r ≤ k} is a clique of size k in
G since α(x) 6= α(¬x).

(⇐): Let S be a clique of size k in G.
Then, S contains exactly one vertex
sr ∈ {vr1, . . . , vrw} for each
r ∈ {1, . . . , k}. Denote by lr the
corresponding literal. Now, for any
r, r′, it is not the case that lr = ¬lr′ .
Therefore, there is an assignment α to
var(F ) such that α(lr) = 1 for each
r ∈ {1, . . . , k} and α satisfies F .
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Vertex Cover

A vertex cover in a graph G = (V,E) is a subset of vertices S ⊆ V such that
every edge of G has an endpoint in S.

Vertex Cover
Input: Graph G, integer k
Question: Does G have a vertex cover of size k?

Theorem 20
Vertex Cover is NP-complete.

Exercise Sheet 1b.
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Hamiltonian Cycle

A Hamiltonian Cycle in a graph G = (V,E) is a cycle visiting each vertex exactly
once.
(Alternatively, a permutation of V such that every two consecutive vertices are
adjacent and the first and last vertex in the permutation are adjacent.)

Hamiltonian Cycle
Input: Graph G
Question: Does G have a Hamiltonian Cycle?

Theorem 21
Hamiltonian Cycle is NP-complete.

Proof sketch.

Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.

Let us show: Vertex Cover ≤P Hamiltonian Cycle

. . .
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Hamiltonian Cycle (2)

Theorem 22
Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

Let us show: Vertex Cover ≤P Hamiltonian Cycle

Let (G = (V,E), k) be an instance for Vertex Cover (VC).

We will construct an equivalent instance G′ for Hamiltonian Cycle (HC).

Intuition: Non-deterministic choices

for VC: which vertices to select in the vertex cover
for HC: which route the cycle takes

. . .
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Hamiltonian Cycle (3)

Theorem 23
Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

Add k vertices s1, . . . , sk to G′ (selector vertices)

Each edge of G will be represented by a gadget (subgraph) of G′

s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle
going through all gadgets of G′ representing these edges.

Attention: we need to allow for an edge to be covered by both endpoints

. . .
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Hamiltonian Cycle (4)

Gadget representing the edge {u, v} ∈ E
Its states: ’covered by u’, ’covered by u and v’, ’covered by v’
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Hamiltonian Cycle (5)
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Further Reading

Chapter 34, NP-Completeness, in [Cor+09]

Garey and Johnson’s influential reference book [GJ79]
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