
Boolean algebra

This note is about Boolean algebras. A formal de�nition of Boolean algebra
was given in the lectures and you can easily �nd it in textbooks. Let me repeat
them with slightly di�erent notation.

1. A Boolean algebra is a set with two binary operations ∨ and ∧, one unary
operation ,̄ and two (special) elements 0 and 1 such that the following hold
for all x, y, z ∈ B.

x ∨ y = y ∨ x

x ∧ y = y ∧ x

}
Commutative laws (1a)

(x ∨ y) ∨ z = x ∨ (y ∨ z)

(x ∨ y) ∨ z = x ∨ (y ∨ z)

}
Associative laws (1b)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

x ∧ (y ∨ z) = (x ∨ y) ∧ (x ∨ z)

}
Distributive laws (1c)

x ∨ 0 = x, x ∧ 1 = x Identity laws (1d)

x ∨ x̄ = 1, x ∧ x̄ = 0 Complementation laws (1e)

2. Some important things to remember.

i. The `0' and `1' in the de�nition of Boolean algebra should not be con-
fused with natural numbers. They are simply members of B with special
properties.

ii. The de�nition of Boolean algebra uses what is called the axiomatic

method. Certain relations among the strings are assumed to always
hold. These are the axioms of the particular mathematical structure
we are dealing with. Pick any undergraduate algebra book and you
will see many such structure. The axiomatic method is all-pervasive in
mathematics and computer science.

The axioms are necessary for general mathematical structures. Some
need not hold for some structures. For example, matrix multiplication
is not commutative in general.
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iii. We use the axioms and rules of logic to derive new results called theo-

rems. Theorems are certain relations that hold in the particular struc-
ture we are dealing with (Boolean algebras in our case). A board game
like chess is a good analogy. There is a well-de�ned starting position�
the `axioms'. Then there are well-de�ned rules of the game and the legal
new positions are the theorems!

Let us prove some theorems of Boolean algebra. Look up the examples of
Boolean algebra. The theorems we prove will seem obvious for them. But we
have to prove them using the above axioms and rules of logic. Below B will
denote an arbitrary Boolean algebra.

1. For all x ∈ B

x ∨ x = x and x ∧ x = x Idempotent laws

Proof. The proof will be in a sequence of steps.
x = x ∨ 0 Eqn. 1d
x ∨ 0 = x ∨ (x ∧ x̄) Eqn. 1e
x ∨ (x ∧ x̄) = (x ∨ x) ∧ (x ∨ x̄) Eqn. 1c
(x ∨ x) ∧ (x ∨ x̄) = (x ∨ x) ∧ 1 = x ∨ x Eqn. 1e and 1d

We are done! The second equation can be proved similarly starting with
x = x ∧ 1 = x ∧ (x ∨ x̄).

2. In a Boolean algebra B the special elements 0 and 1 are unique. For all
x ∈ B, its complement x̄ is the unique element satisfying x ∨ x̄ = 1 and
x ∧ x̄ = 0.

Proof. By de�nition 0 and 1 have special properties x∨ 0 = x and x∧ 1 = x.
The uniqueness result says that in fact these are the only elements satisfying
these properties. Let us take 0 �rst suppose another element say 0′ which
has the property that for all x ∈ B, x ∨ 0′ = x. Then

0 ∨ 0′ = 0 from the assumption on 0′

0′ ∨ 0 = 0′ from the identity laws

Since from the commutative laws the left sides are equal 0 = 0′. You can
prove uniqueness of 1 similarly. Now let us prove the uniqueness of the
complement x̄. Fix x ∈ B and suppose there is some x′ such that x ∨ x′ = 1
and x ∧ x′ = 0. Then

x̄ ∧ (x ∨ x′) = x̄ ∧ 1 = x̄ Identity laws

x̄ ∧ (x ∨ x′) = (x̄ ∧ x) ∨ (x̄ ∧ x′) Dist. laws

= 0 ∨ (x̄ ∧ x′) = (x̄ ∧ x′) Comp. laws and Id. laws

So x̄ = xx̄ ∧ x′. Now by de�nition x ∨ x̄ = 1. So we can interchange x′ and
x̄ in the line of reasoning given above and get x′ = x′ ∧ x̄. It follows that
x′ = x̄.
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3. From the uniqueness of the complement it follows that: 0̄ = 1 and 1̄ = 0. Also
for any x, ¯̄x = x, taking complement twice we recover the original element.

4. x ∨ 1 = 1 and x ∧ 0 = 0

Proof.

x ∨ 1 = x ∨ (x ∨ x̄) Comp. laws

= (x ∨ x) ∨ x̄ Assoc. laws

= x ∨ x̄ = 1 Idempotent and Comp. laws

Note that we used the idempotent laws which we �rst proved as a theo-
rem. This is perfectly legitimate�you can use any theorem you have already
proved just like axioms. This method is often used in mathematics and com-
puter science. You prove `smaller' theorems (often called lemmas) to prove
a `big' theorem. Try proving the second result: x ∧ 0 = 0.

5. For all x, y ∈ B, x ∨ y = x̄ ∧ ȳ and x ∧ y = x̄ ∨ ȳ. These are called De
Morgan's laws.

Proof. We will use the uniqueness theorem for complements. So if we set
x∨ y = z we have to show that (x̄∧ ȳ) ∨ z = 1 and (x̄∧ ȳ) ∧ z = 0. We have

(x̄ ∧ ȳ) ∨ z = (x̄ ∨ z) ∧ (ȳ ∨ z)

= (x̄ ∨ (x ∨ y)) ∧ (ȳ ∨ (x ∨ y))

= ((x̄ ∨ x) ∨ y) ∧ ((ȳ ∨ y) ∨ x)

= (1 ∨ y) ∧ (1 ∨ x)

= 1 ∧ 1 = 1

In the �rst line we used dist. laws, second line is just the de�nition of z
and the third line used both associative and commutative laws. In the last
but one line we use the theorem preceding this one. Try proving the second
equation.

We have seen some basic theorems of Boolean algebra. These are quite useful
and can be used to prove more complex theorems. Manas Patra
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