
1

Review of Basic Software Design
Concepts

Fethi Rabhi
SENG 2021

2

Topics
• The development process

– Planning
– Designing
– Implementing

3

1. The development process
• How to organise activities related to the

creation, delivery and maintenance of
software

• There are some fairly common processes
– Traditional methods: Waterfall
– Agile methods: Scrum

• 3 major steps: A. Requirements analysis
 B. Design
 C. Build and Deploy

Our focus is here

4

A. Requirements analysis and specification

• Can involve
– Formal specifications (B-specification)
– Use cases (UML use cases)
– Epics and Stories (Scrum)

• Which one(s) to use
– Can be a mixture
– Depends on type of system

5

Use case diagrams

• Stories about using the system
• Can be expressed in varying degrees of

detail and commitment to design decisions
(essential vs real use cases)

• Development cycles are organised around
use cases ⇒ they need to be ranked

• Use cases determine some preliminary
classes (domain classes)

User stories
• Similar to use cases but smaller/more

informal
• Examples

– A bank customer can change his PIN.
• Acceptance Criteria: ….

– As a student, I can find my grades online so that I don’t have to wait until
the next day to know whether I passed.

• Acceptance Criteria: ….
– As a book shopper, I can read reviews of a selected book to help me

decide whether to buy it.
• Acceptance Criteria: ….

– As an author, I want the spell checker to ignore words with numbers so
that only truly misspelled words are indicated.

• Acceptance Criteria: ….

6

7

B. Design
• Next phase after requirements analysis
• First step in building the system
• Design is a process
• Design operates according to a specific

methodology (e.g. OO)
• The design can be represented using a

notation (e.g. UML)
• Methodologies/notations are usually

supported by tools

8

There are two ways of constructing a
software design: one way is to make it
so simple that there are obviously no
deficiencies, and the other way is to
make it so complicated that there are
no obvious deficiencies

C.A.R. Hoare

9

Requirements
analysis

Design

Implementation Testing

Maintenance

Software architecture

Detailed design

10

Software architectures
• Equivalent to design at the highest level
• Essential for large applications: defines “parts” of

the system and how these parts are assembled
• Architecture satisfies design goals e.g.:

– Extensibility (ability to add new features)
– Adaptability (accommodating changing reqs.)
– Simplicity (ease of understanding/implementing)
– Efficiency (time/space)

11

Decomposition criteria

• Decomposition into modules/components/packages
etc. is of critical importance in the design activity
– Cohesion is the degree to which communication takes

place among the module’s elements
– Coupling describes the degree to which modules

communicate with each other.
• Low coupling/high cohesion is essential for

managing changes

12

Detailed Design
• Not one but many!

– Successions of refinements from the overall
architecture

– Involves modelling of certain elements to make
implementation easier

• Design coverage
– Function
– Structure
– Behaviour
– Information

13

Detailed Design
• Detailed design is usually closely associated with

the implementation language used
• If using an OO language (e.g. Java)

– Some design elements can be expressed in the Unified
Modelling Language (UML)

– UML is an OMG standard
– UML contains lots of notations

• If using a database
– Information structure can be modelled using a

conceptual modelling notation

14

UML Notations

Use case view

Design view Process view Implementation Deployment

Class/
Object

diagrams

Sequence/Statechart
/Activity diagrams

Component/
Package
diagrams

Deployment
diagrams

Software
Architecture

UML

Use-case
diagrams

15

Typical OO design

• Expand use cases (real use cases)
• Develop collaboration or sequence or

statechart diagrams (just use 1 of them!)
• Defining classes (in parallel)
• Each class needs responsibilities assigned to

it

16

Data modelling

• Identify domain objects, their attributes and
associations between objects

• Normally, combination ER-
diagram/sequence diagrams

• Relational models (for SQL databases)
• Formal methods: more powerful and

unambiguous

17

User Interface and visualisation design

• Helping users to interact with systems
– Intuitive interfaces
– Diversity in user devices
– Easy to learn

• Visualisation
– Viewing complex data
– Infographics

18

C. Build and Deploy phase

• Start thinking about implementation
• Identify languages/platforms to be used
• “Packaging” of classes into programs.
• Allocating packages to platforms

(deployment)

19

Design tools
• Functions

– Modelling design artefacts
– Managing/sharing models

• Tools
– For architecture, people tend to use a drawing

tool
– For detailed design, several UML tools exist

(e.g. https://www.draw.io/)
– Benefits: consistency checks, automatic code

generation
– Disadvantages: steep learning curve

https://www.draw.io/

20

Conclusions
• Design is next activity after requirement

analysis
• Divided into 2 stages: architectural design

and detailed design
– Architectural design facilitated by the use of

design patterns
– Detailed design is an iterative activity: check

requirements satisfaction, think about
implementability

Focus of this workshop

21

System Scope and Specification

Software Design
Interface

Design

Implementation Considerations

Software Architecture

22

Further reading
• Braude, Software Engineering: An Object-Oriented

Perspective, J. Wiley, 2001 [Chapter 5]
• Buschmann et al., Pattern-Oriented Software Architecture:

A System of Patterns, J. Wiley, 1996.
• Gamma et al., Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, 1995.
• Larman, Applying UML and Patterns: an Introduction to

Object-Oriented Analysis and Design, Prentice Hall, 1998.
• Bruegge and Dutoit, Object-Oriented Software

Engineering: Conquering Complex and Changing Systems,
Prentice Hall, 2000.

	Review of Basic Software Design Concepts
	Topics
	1. The development process
	A. Requirements analysis and specification
	Use case diagrams
	User stories
	B. Design
	Slide Number 8
	Slide Number 9
	Software architectures
	Decomposition criteria
	Detailed Design
	Detailed Design
	UML Notations
	Typical OO design
	Data modelling
	User Interface and visualisation design
	C. Build and Deploy phase
	Design tools
	Conclusions
	Focus of this workshop
	Further reading

