Review of Basic Software Design Concepts

Fethi Rabhi
SENG 2021
Topics

• The development process
 – Planning
 – Designing
 – Implementing
1. The development process

• How to organise activities related to the creation, delivery and maintenance of software

• There are some fairly common processes
 – Traditional methods: Waterfall
 – Agile methods: Scrum

• 3 major steps: A. Requirements analysis
 B. Design
 C. Build and Deploy

Our focus is here
A. Requirements analysis and specification

- Can involve
 - Formal specifications (B-specification)
 - Use cases (UML use cases)
 - Epics and Stories (Scrum)

- Which one(s) to use
 - Can be a mixture
 - Depends on type of system
Use case diagrams

• Stories about using the system
• Can be expressed in varying degrees of detail and commitment to design decisions (essential vs real use cases)
• Development cycles are organised around use cases \Rightarrow they need to be ranked
• Use cases determine some preliminary classes (domain classes)
User stories

• Similar to use cases but smaller/more informal

• Examples
 – A bank customer can change his PIN.
 • Acceptance Criteria: ….
 – As a student, I can find my grades online so that I don’t have to wait until the next day to know whether I passed.
 • Acceptance Criteria: ….
 – As a book shopper, I can read reviews of a selected book to help me decide whether to buy it.
 • Acceptance Criteria: ….
 – As an author, I want the spell checker to ignore words with numbers so that only truly misspelled words are indicated.
 • Acceptance Criteria: ….

B. Design

- Next phase after requirements analysis
- First step in building the system
- Design is a *process*
- Design operates according to a specific *methodology* (e.g. OO)
- The design can be represented using a *notation* (e.g. UML)
- Methodologies/notations are usually supported by *tools*
There are two ways of constructing a software design: one way is to make it so simple that there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies

C.A.R. Hoare
Software architectures

• Equivalent to design at the highest level
• Essential for large applications: defines “parts” of the system and how these parts are assembled
• Architecture satisfies design goals e.g.:
 – Extensibility (ability to add new features)
 – Adaptability (accommodating changing reqs.)
 – Simplicity (ease of understanding/implementing)
 – Efficiency (time/space)
Decomposition criteria

• Decomposition into modules/components/packages etc. is of critical importance in the design activity
 – Cohesion is the degree to which communication takes place among the module’s elements
 – Coupling describes the degree to which modules communicate with each other.

• Low coupling/high cohesion is essential for managing changes
Detailed Design

- Not one but many!
 - Successions of refinements from the overall architecture
 - Involves modelling of certain elements to make implementation easier

- Design coverage
 - Function
 - Structure
 - Behaviour
 - Information
Detailed Design

• Detailed design is usually closely associated with the implementation language used

• If using an OO language (e.g. Java)
 – Some design elements can be expressed in the Unified Modelling Language (UML)
 – UML is an OMG standard
 – UML contains lots of notations

• If using a database
 – Information structure can be modelled using a conceptual modelling notation
UML Notations

- Use case view
- Design view
- Process view
- Implementation
- Deployment

Class/Object diagrams
Sequence/Statechart/Activity diagrams
Deployment diagrams
Use-case diagrams
Component/Package diagrams
Typical OO design

• Expand use cases (real use cases)
• Develop collaboration or sequence or statechart diagrams (just use 1 of them!)
• Defining classes (in parallel)
• Each class needs *responsibilities* assigned to it
Data modelling

• Identify domain objects, their attributes and associations between objects
• Normally, combination ER-diagram/sequence diagrams
• Relational models (for SQL databases)
• Formal methods: more powerful and unambiguous
User Interface and visualisation design

• Helping users to interact with systems
 – Intuitive interfaces
 – Diversity in user devices
 – Easy to learn

• Visualisation
 – Viewing complex data
 – Infographics
C. Build and Deploy phase

- Start thinking about implementation
- Identify languages/platforms to be used
- “Packaging” of classes into programs.
- Allocating packages to platforms (deployment)
Design tools

• Functions
 – Modelling design artefacts
 – Managing/sharing models

• Tools
 – For architecture, people tend to use a drawing tool
 – For detailed design, several UML tools exist (e.g. https://www.draw.io/)
 – Benefits: consistency checks, automatic code generation
 – Disadvantages: steep learning curve
Conclusions

• Design is next activity after requirement analysis

• Divided into 2 stages: architectural design and detailed design
 – Architectural design facilitated by the use of design patterns
 – Detailed design is an iterative activity: check requirements satisfaction, think about implementability
Focus of this workshop

- System Scope and Specification
- Interface Design
- Software Architecture
- Software Design
- Implementation Considerations
Further reading

- Gamma et al., *Design Patterns: Elements of Reusable Object-Oriented Software*, Addison-Wesley, 1995.