
1

1

COMP2121: Microprocessors and
Interfacing

Caches

http://www.cse.unsw.edu.au/~cs2121

Lecturer: Hui Wu

Term 2, 2019

Contents

• Directed Mapped Cache

• Set Associative Cache

• Fully-Associative Cache

2

1

2

2

3

Revisiting Memory Hierarchy (1/2)

Processor

Registers

Fastest but
most

expensive

Cache or
On-chip
memory
(SRAM)

Off-chip
memory
(RAM,
ROM)

Auxiliary
storage

(hard disk,
floppy
disk,

CDROM)

Slowest
and

cheapest

Decreasing
speed and

cost Increasing
size

Main
memory

Revisiting Memory Hierarchy (2/2)

4

• Better performance by having a hierarchy of storages

• The closer to CPU a storage, the faster it is

• Caches are used to speed up accesses to main memory
 A cache is a high speed buffer to store data and instructions

 A cache is managed by hardware and typically invisible to
programmers

 Typically there are separate level-one (L1) caches for
instructions and data and a shared level-two (L2) cache for
both data and instructions

 For each memory access, the processor looks up the L1 cache,
then the L2 cache, and lastly the main memory

3

4

3

Two Levels of Caches

5

Why Caches Work?

6

• Temporal Locality: If a memory location is referenced, it
is very likely that the memory location will be referenced
again in the near future
 Loops

• Spatial Locality: If a memory location is referenced, it is
very likely that a nearby memory location will also be
referenced in the near future
 Sequential accesses to an array

5

6

4

General Organisation of Caches (1/3)

7

• A cache is an array of sets

• Each set contains one or more cache lines

• Each cache line holds a block of data
 Information transfer between the cache and the

memory is in terms of complete cache lines,

rather than individual bytes. Thus if a program

needs a particular byte, the entire cache line

containing that byte is obtained from the memory

General Organisation of Caches (2/3)

8

B = 2b bytes
per cache block

L lines
per set

S = 2s sets

tag bits
per line

Cache size: C = B x L x S bytes

• • • B–110

• • • B–110

valid

valid

tag

tag
set 0: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set 1: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set S-1: • • •

• • •

1 valid bit
per line

7

8

5

General Organisation of Caches (3/3)

• The main memory is partitioned into contiguous
memory blocks such that each memory block exactly
fits one cache line

• The tag serves as a unique identifier for a group of data.
Because different memory blocks may be mapped into
the same cache line, the tag is used to differentiate
between them

• The valid bit indicates whether the data in a block is
valid (1) or not (0).

Cache Organisations

10

• Direct mapped cache
 Each set has only one cache line

 Each main memory block maps to exactly one cache line

• Set associative cache
 Each set has a fixed number of cache lines

 Each memory block can map to any cache line of a set

• Fully associative cache
 There is only one set

 Each memory block can map to any cache line of a set

9

10

6

Direct Mapped Cache (1/5)

11

• Each memory block maps to only one cache line
• Address is in two parts: Least significant bits identify a

unique word, and most significant bits specify one memory
block

• The MSBs are split into an index field (cache line number)
and a tag field

Direct Mapped Cache (2/5)

12Taken from https://en.wikipedia.org/wiki/Cache_Placement_Policies

11

12

7

Direct Mapped Cache (3/5)

13

To place a memory block in the cache

• The set is determined by the index bits derived from the
address of the memory block

• The memory block is placed in the set identified and the
tag is stored in the tag field associated with the set

• If the cache line is previously occupied, then the new
data replaces the memory block in the cache

Direct Mapped Cache (4/5)

14

To locate a word in the cache

• The set is identified by the index bits of the address

• The tag of the memory address is compared with the tag of
the set. If the tag matches, there is a cache hit and the
cache block is returned to the processor. Otherwise, there
is a cache miss and the memory block is fetched from the
main memory

13

14

8

Direct Mapped Cache (5/5)

15

Advantages
• This placement policy is power efficient as it needs

only one comparator
• The placement policy and the replacement policy is

simple
• It requires cheap hardware as only one tag needs to be

checked at a time.

Disadvantage
• It has lower cache hit rate, as there is only one cache

line available in a set
• Every time a new memory is referenced to the same

set, the cache line is replaced

Fully Associative Cache (1/5)

16

• There is only one set
• Each memory block can map to any cache line
• Address is in two parts: Least significant bits identify

a unique word, and most significant bits are used as
tag

15

16

9

Fully Associative Cache (2/5)

17

Fully Associative Cache (3/5)

18

To place a memory block in the cache

• The cache line is selected based on the valid bit
associated with it. If the valid bit is 0, the new
memory block can be placed in the cache line, else it
has to be placed in another cache line with valid bit 0

• If the cache is completely occupied, then a block is
evicted and the memory block is placed in that cache
line
 The eviction of memory block from the cache is decided by

the replacement policy

17

18

10

Fully Associative Cache (4/5)

19

To locate a word in the cache

• The tag of the memory address is compared with the
tags of all cache lines. If it matches, the block is
present in the cache and is a cache hit. Otherwise, it is
a cache miss and has to be fetched from the lower
memory

• Based on the offset, a byte is selected and returned to
the processor

Fully Associative Cache (5/5)

20

Advantages
• Fully associative cache provides us the flexibility of

placing memory block in any of the cache lines and
hence full utilization of the cache

• The placement policy provides better cache hit rate
• It offers the flexibility of utilizing a wide variety of

replacements algorithms if a cache miss occurs

Disadvantages
• Needs n comparators, where n is the number of cache

lines, and thus infeasible

19

20

11

Set Associative Cache (1/5)

21

• A trade-off between direct mapped cache and fully
associative cache

• Each set has a fixed number of cache lines
• Each memory block can map to any cache line of the

set it belongs to

Set Associative Cache (2/5)

22

21

22

12

Set Associative Cache (3/5)

23

To place a memory block in the Cache

• The set is determined by the index bits derived from
the memory address

• The memory block is placed in the set identified and
the tag is stored in the tag field associated with the set

• If the cache line is occupied, then the new data
replaces the cache block identified with the help of
replacement policy

Set Associative Cache (4/5)

24

To locate a word in the Cache

• The set is determined by the index bits derived from
the address of the memory block

• The tag is compared with the tags of all cache lines of
the selected set. If the tag matches, then it is a cache
hit and the appropriate word is fetched and delivered
to the processor. If the tag does not match, it is a cache
miss and is fetched from the main memory

23

24

13

Set Associative Cache (5/5)

25

Advantages

• It makes a good trade-off between hardware complexity
and cache hit rate

Disadvantages

• The placement policy will not effectively use all the
available cache lines in the cache

Cache Replacement Algorithm (1/2)

26

• No choice
• Each block only maps to one line
• Replace that line

For direct mapped Cache

25

26

14

Cache Replacement Algorithm (2/2)

27

For fully associative cache and set associative cache

• Hardware implemented algorithm (speed)
• Least Recently used (LRU): replace the block with no

reference longest time
• First in first out (FIFO): replace the block that has been

in the cache longest
• Least frequently used (LFU): replace block which has

had fewest hits
• Random (implemented using counter)

Write Policy

28

• A cache line must not overwritten by a block unless
main memory is up to date

• Multiple CPUs may have individual caches
• I/O may address main memory directly and it may

cause inconsistency

27

28

15

Write Through

29

• All writes go to main memory as well as cache
• Multiple CPUs can monitor main memory traffic to

keep L1 cache up to date
• Lots of traffic
• Slows down writes

Write Back

30

• Updates initially made in cache only
• Update bit for the cache line is set when update

occurs
• If a memory block is to be replaced, write to main

memory only if update bit is set
• Other caches get out of sync

29

30

