
COMP2111 Week 7
Term 1, 2019
Week 6 recap

1



Week 6 recap

Hoare Logic:

Soundness proof

Finding a derivation

Weakest precondition
Invariants

Total correctneess (termination) and variants

Operational semantics

L+: L with non-determinism

Refinement calculus

2



Soundness and (relative) completeness

Theorem (Soundness)

Every derivable Hoare triple is valid: If ` {ϕ}P {ψ} then
|= {ϕ}P {ψ}.

Theorem (Relative completeness)

Given an oracle that can determine the truth of predicates, every
valid Hoare triple is derivable: If |= {ϕ}P {ψ} then ` {ϕ}P {ψ}.

3



Finding a proof: weakest precondition

Given a program P and a postcondition ψ, the weakest
precondition wp(P, ψ) is the predicate ϕ such that

{ϕ}P {ψ} is valid

If {ϕ′}P {ψ} is valid then ϕ′ → ϕ.

Computable based on the structure of P. Difficulty with loops...

4



Finding a proof: Invariants

In order to establish the validity of

{ϕ}while b do P od {ψ}

we find an Invariant, Inv, such that:

ϕ→ Inv (establish)

{b ∧ Inv}P {Inv} (maintain)

¬b ∧ Inv → ψ (conclude)

5



Total correctness (termination)

[ϕ]P [ψ]

Represents the statement that with precondition ϕ, program P will
terminate at a state that satsifies ψ.

Can derive validity of [ϕ]P [ψ] using Hoare logic with modified
loop command:

[ϕ ∧ g ∧ (v = N)]P [ϕ ∧ (v < N)] (ϕ ∧ g) → (v > 0)
(loop)

[ϕ] while g do P od [ϕ ∧ ¬g ]

6



Finding a (total correctness) proof: Variants

In order to establish the validity of

[ϕ] while b do P od [ψ]

we find an Invariant, Inv, such that:

ϕ→ Inv (establish)

[b ∧ Inv]P [Inv] (maintain)

¬b ∧ Inv → ψ (conclude)

and a variant, Var ∈ Exp, such that:

(b ∧ Inv) → (Var > 0) (positivity)

[Inv ∧ b ∧ (Var = N)]P [Inv ∧ (v < N)] (progress)

7



Operational semantics

Denotational semantics: Assign a mathematical object
(relation between states) to Programs

Operational semantics: Construct (inductively) a relation,
⇓, between Programs and pairs of states

Example rule:

[P, η] ⇓ η′ [Q, η′] ⇓ η′′

[P;Q, η] ⇓ η′′

8



Non-determinism

Non-determinism = unspecified program branching

More powerful: Encompasses deterministic behaviour

More abstract: Mathematically nicer

L+: Non-deterministic extension of L
P + Q – non-deterministic choice between P and Q

P∗ – loop for a non-deterministic number of times

9



Refinement calculus

Process for transforming abstract specifications into concrete code.

Start with the most abstract program relating pre- and
post-conditions

Use refinement rules (based on rules of Hoare Logic) to refine
the program – i.e. make it less abstract

The end result will be some program in L (or similar)

10



Need to know for this course

Nothing will be assessed in great detail, however, a good
understanding of:

Weak precondition

Invariants

Termination and variants

Non-determinism

will help a lot.

11


