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1 The Principle of Inclusion-Exclusion

... for 3 sets

[AUBUC| =|A|+|B|+|C| = |[AnB|—|ANC|—|BNnC|+|ANnBNC]|
AUBUCI= Y (—1)|X|+1-‘ﬂX’

XC{A,B,C'}

A C

. intersection version

IANBNC|=|U|-[A] = |B| = |C|+|[AnB|+|[AnC|+|BNnC| - |[AnBnNC)|
AnBaCl= 3 (-l ‘ﬂf‘

XC{A,B,C}



Inclusion-Exclusion Principle — intersection version

Theorem 1 (IE-theorem — intersection version). Let U = Ag be a finite set, and let Aq,..., A CU.
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where A; = U\ A; and ;e = U.
Proof sketch. e Anelement e € (\;cqy ;A is counted on the right only for J = 0.

e An element e ¢ (\;c(; _;y Ai is counted on the right for all J C I, where I is the set of indices i such that
(& ¢ Az

— counted negatively for each odd-sized J C I, and positively for each even-sized J C I

— a non-empty set has as many even-sized subsets as odd-sized subsets

2 Counting Hamiltonian Cycles
Walks and cycles

e A walk of length k in a graph G = (V, E) (short, a k-walk) is a sequence of vertices vy, v1, ..., v such that
v;U;+1 € E for each i € {0,...,k—1}.

e A walk (vg,v1,...,v;) is closed if vy = vg.
e A cycle is a 2-regular subgraph of G.

e A Hamiltonian cycle of G is a cycle of length n = |V|.
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#Hamiltonian-Cycles

#HAMILTONIAN-CYCLES
Input: A graph G = (V, E)
Output: The number of Hamiltonian cycles of G

This graph has 2 Hamiltonian cycles.

IE for #Hamiltonian-Cycles
e U: the set of closed n-walks starting at vertex 1
e A, CU: walks in U that visit vertex v € V

e = number of Hamiltonian cycles is | (), o1 4o|

veV

e To use the IE-theorem, we need to compute | (), . ¢ 4,|, the number of walks from U in the graph G — S.

veES

A simpler problem

#CLOSED n-WALKS
Input: An integer n, and a graph G = (V, E) on < n vertices
Output: The number of closed n-walks in G starting at vertex 1

Dynamic programming
e T'[d,v]: number of d-walks starting at vertex 1 and ending at vertex v
e Base cases: T[0,1] =1 and T[0,v] =0 for all v € V'\ {1}
e DP recurrence: T'[d,v] =3, cpT[d—1,u]
e Table T is filled by increasing d

e Return T'[n, 1] in O(n?) time

Wrapping up

e Recall:
U: set of closed n-walks starting at vertex 1
A, set of closed n-walks that start at vertex 1 and visit vertex v

e By the IE-theorem, the number of Hamiltonian cycles is

n Av = Z(_l)‘s‘

VeV scv

N,

veS

e We have seen that ‘ﬂves Tv| can be computed in O(n?) time.
e 50, Mgy (=DM, e5 Au| can be evaluated in O(2"n?) time

Theorem 2. #HAMILTONIAN-CYCLES can be solved in O(2"n?) time and polynomial space, where n = |V|.



3 Coloring

A k-coloring of a graph G = (V, E) is a function f : V — {1,2, ..., k} assigning colors to V such that no two adjacent
vertices receive the same color.

COLORING
Input: Graph G, integer k
Question: Does G have a k-coloring?
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Exercise

e Suppose A is an algorithm solving COLORING in O(f(n)) time, n = |V|, where f is non-decreasing.

e Design a O*(f(n)) time algorithm B, which, for an input graph G, finds a coloring of G with a minimum
number of colors.

IE formulation

Observation: partitioning vs. covering
G = (V, E) has a k-coloring < G has independent sets Iy, ..., I such that Ule IL,=V.

e U: set of tuples (I1,...,Ix), where each I, ¢ € {1,...,k}, is an independent set
o Ay ={(I1,.... Ix) €U : v € U,eqn, 4y Li}

e Note: | ey Av| # 0 < G has a k-coloring

e To use the IE-theorem, we need to compute

N«

veS

—{(L,....Iy) €U : I,....I, CV\ S}|

=s(V\8)",
where s(X) is the number of independent sets in G[X]

A simpler problem

#IS OF INDUCED SUBGRAPHS
Input: A graph G = (V, E)
Output:  s(X), the number of independent sets of G[X], for each X CV

Dynamic Programming

s(X): the number of independent sets of G[X]

Base case: s()) =1

DP recurrence: s(X) = s(X \ Ng[v]) + s(X \ {v}), where v € X

Table s filled by increasing cardinalities of X
Output s(X) for each X C V in time O*(2")



Wrapping up
Now, evaluate

N A

veV

= Z(fl)l‘g'
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= > (-1)¥ls(v\ 9F,

SCV

in O*(2") time. G has a k-coloring iff |,y 4u| > 0.

veV
Theorem 3 ([Bjorklund & Husfeldt "06], [Koivisto '06]). COLORING can be solved in O*(2™) time (and space).
Corollary 4. For a given graph G, a coloring with a minimum number of colors can be found in O*(2") time (and

space).

... polynomial space
Using an algorithm by [Gaspers, Lee, 2017], counting all independent sets in a graph on n vertices in O(1.2355™)
time, we obtain a polynomial-space algorithm for COLORING with running time

n

> o235 =3 (”)0(1.2377“) = 0(2.2355™).
SCV s=0 s

Here, we used the Binomial Theorem: (z +y)" = >"p_ (})a" Fy*.

Theorem 5. COLORING can be solved in O(2.2355™) time and polynomial space.

4 Counting Set Covers

#SET COVERS

Input: A finite ground set V' of elements, a collection H of subsets of V', and an integer k
Output: The number of ways to choose a k-tuple of sets (S7,...,S;) with S; € H, i € {1,...,k}, such that

U, s =V.
e

This instance has 1 - 3! = 6 covers with 3 sets and 3 - 4! = 72 covers with 4 sets.

We consider, more generally, that H is given only implicitly, but can be enumerated in O*(2") time and space.

Algorithm for Counting Set Covers
e U: set of k-tuples (Si,...,Sk), where S; € H, i € {1,...,k},

o Ay ={(S1,.--, %) €U : veUicq, 1y Si}s

e the number of covers with k sets is

N A =D (D8N 4,

veV SCV veS
=Y (-DIFls(V\ 9)F,
SCV

where s(X) is the number of sets in H that are subsets of X.



Compute s(X)
For each X C V, compute s(X), the number of sets in H that are subsets of X.

Dynamic Programming

Arbitrarily order V = {v1,va,...,0,}

gl X,il={SeH:(XNn{v,...,on}) CSC X}

Note: g[X,n+ 1] = s(X)

1 fXeH

0 otherwise.

Base case: g[X,1] = {

g[X,Z—l] if’l}i_l ¢X
g X \{vi—1}, i — 1]+ g[X,i — 1] otherwise.

DP recurrence: g[X,i] = {

Table filled by increasing ¢

Theorem 6. #SET COVERS can be solved in O*(2"™) time and space, where n = |V|.

5 Counting Set Partitions

#ORDERED SET PARTITIONS
Input: A finite ground set V of elements, a collection H of subsets of V', and an integer k
Output: The number of ways to choose a k-tuple of pairwise disjoint sets (S1,...,S;) with S; € H, i €
{1,...,k}, such that Ule S, =V.
(NO’LU, Sz ﬂSj = @, ’LfZ 75_])

This instance has 1 - 3! = 6 ordered partitions with 3 sets.

Algorithm
Using a similar approach:

Theorem 7. #ORDERED SET PARTITIONS can be solved in O*(2™) time and space.

Corollary 8. There is an algorithm computing the number of k-colorings of an input graph on n vertices in O*(2™)
time and space.

Covering and partitioning in polynomial space

Theorem 9. The number of covers with k sets and the number of ordered partitions with k sets of a set system
(V,H) can be computed in polynomial space and

1. O*(2"|H|) time, assuming that H can be enumerated in O*(|H|) time and polynomial space
2. O*(3™) time, assuming membership in H can be decided in polynomial time, and

3. Z?:o (?)TH (j) time, assuming there is a Ty (j) time and polynomial space algorithm to count for any W CV
with |W| = j the number of sets S € H satisfying SNW = {.



6 Further Reading

e Chapter 4, Inclusion-Exclusion in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms.
Springer, 2010.

e Thore Husfeldt. Invitation to Algorithmic Uses of Inclusion-Exclusion. Proceedings of the 38th International
Colloquium on Automata, Languages and Programming (ICALP 2011): 42-59, 2011.

Advanced Reading

e Chapter 7, Subset Convolution in Fedor V. Fomin and Dieter Kratsch. FExact Exponential Algorithms.
Springer, 2010.
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