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Horn clauses

Clauses are used two ways:
• as disjunctions: ! (rain ∨ sleet)

• as implications:! (¬child ∨ ¬male ∨ boy)

Here focus on 2nd use

Horn clause = at most one +ve literal in clause
• positive / definite clause  =  exactly one +ve literal

! [¬p1, ¬p2, ..., ¬pn, q]

• negative clause  =  no +ve literals
! [¬p1, ¬p2, ..., ¬pn]

Note 
! [¬p1, ¬p2, ..., ¬pn, q]         is a representation for

! (¬p1 ∨ ¬p2 ∨ ... ∨ ¬pn ∨ q)!or

! [(p1 ∧ p2 ∧ ... ∧ pn)  ⊃  q]

So can read as
! If  p1 and  p2 and  ... and  pn  then q

and write sometimes as 
! ! p1 ∧ p2 ∧ ... ∧ pn  ⇒  q
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Resolution with Horn clauses

Only two possibilities:

It is possible to rearrange derivations (of negative 
clauses) so that all new derived clauses are negative 
clauses

Can also change derivations such that each derived 
clause is a resolvent of the previous derived one (-ve) 
and some +ve clause in the original set of clauses

! Since each derived clause is negative, one parent must be 
positive (and so from original set) and one negative.

! Continue working backwards until both parents of derived 
clause are from the original set of clauses

! Eliminate all other clauses not on direct path

Neg Pos

Neg

Pos Pos

Pos

[α, ¬q, p] [β, q]

[ p, α, β][γ, ¬p]

[α, β, γ]

[α, ¬q, p]

[β, q][α, γ, ¬q]

[γ, ¬p]

[α, β, γ]
derived positive
clause to eliminate

the α, β, γ are
negative lits
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SLD Resolution

Recurring pattern in derivations:

See previously:
• example 1
• example 3
• arithmetic example

But not:
• example 2
• 3 block example

An SLD-derivation of a clause c from a set of 
clauses S is a sequence of clause c1, c2, ... cn 
such that cn = c, and

1.! c1 ∈ S
2.! ci+1 is a resolvent of ci and a clause 

in S

Write:   S |⎯   c
SLD

Note: SLD derivation is just a special form of 
derivation and where we leave out the elements of S  
(except c1)

c1

c2

c3

cn

cn-1

new

old

SLD  means S(elected) literals
 L(inear) form
 D(efinite) clauses
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Completeness of SLD

In general, cannot restrict Resolution steps to 
always use a clause that is in the original set 

But can do so for Horn clauses...

Theorem:  for Horn clauses,  H |⎯ []   iff  H |⎯ []
! So:    H is unsatisfiable iff  H |⎯  []
! This will considerably simplify the search 

for derivations

Note:  in Horn version of SLD-Resolution, each 
clause c1, c2, ..., cn, will be negative

! So clauses H  must always contain at least one 
negative clause, c1.

Proof:
! S = {[p, q], [p, ¬q], [¬p, q] [¬p, ¬q]}
* ** * then  S |⎯  [].
* Need to resolve some [l] and [¬l] to get [].
* But S does not contain any unit clauses.

! So will need to derive both [l] and 
[¬l]* * and then resolve them together.

SLD

SLD
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Example 1 (again)

KB:
! FirstGrade

! FirstGrade  ⇒  Child

! Child ∧ Male ⇒ Boy

! Kindergarten  ⇒  Child

* Child ∧ Female ⇒  Girl

* Female

Show  KB ∪ {~Girl}  unsatisfiable

[¬Girl]

[¬Child, ¬Female]

[¬Child]

[¬FirstGrade]

[]

or

A goal tree whose nodes are 
atoms, whose root is the atom to 
prove, and whose leaves are in 
the KB

Girl

Child     Female

FirstGrade

goal

solved

solved

KR & R! ©  Brachman & Levesque  2005   Horn Logic       

Prolog

Horn clauses form the basis of Prolog

Append(nil,y,y)
Append(x,y,z)  ⇒  Append(cons(w,x),y,cons(w,z))

With SLD derivation, can always extract answer from proof 
! H  |=  ∃x α(x)    iff   for some term t,  H  |=  α(t)

Different answers can be found by finding other derivations 

Append(cons(a,cons(b,nil)), cons(c,nil), u)

Append(cons(b,nil), cons(c,nil), u′)

Append(nil, cons(c,nil), u′′)

solved:

u / cons(a,u′)

u′ / cons(b,u′′)

u′′ /  cons(c,nil)

So goal succeeds with u = cons(a,cons(b,cons(c,nil)))
that is:  Append([a b],[c],[a b c])

goal
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Back-chaining procedure

Satisfiability of a set of Horn clauses with exactly 
one negative clause

Solve[q1, q2, ..., qn] =!! /*  to establish conjunction of qi   */

! If n=0  then return YES;    ! /*  empty clause detected  */

! For each d  ∈  KB  do
! If  d = [q1, ¬p1, ¬p2, ..., ¬pm]* /* match first q */

! ! and             ! ! /* replace q by -ve lits */

!     Solve[p1, p2, ..., pm, q2, ..., qn]! /* recursively */

! then return YES
! end for;                     ! /* can't find a clause to eliminate q */

! Return NO

Depth-first, left-right, back-chaining
• depth-first because attempt pi before trying qi

• left-right because try qi in order, 1,2, 3, ...
• back-chaining because search from goal q to facts in KB p

This is the execution strategy of Prolog
! First-order case requires unification etc.
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Problems with back-chaining

Can go into infinite loop
! tautologous clause:  [p , ¬p]

! corresponds to Prolog program with  p :- p.

Previous back-chaining algorithm is inefficient
! Example:  consider 2n atoms:  p1, ..., pn, q1, ..., qn

! ! and 4n - 4 clauses:
! ! ! (pi  ⇒  pi+1),  (qi  ⇒  pi+1), 
! ! (pi  ⇒  qi+1),  (qi  ⇒  qi+1).

! ! with goal pn    has execution tree like this

! ! search eventually fails after 2n steps!

pn

pn-1 qn-1

pn-2 qn-2 pn-2 qn-2

... ... ... ...
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Forward-chaining

Simple procedure to determine if Horn KB |= q.
! main idea:  mark atoms as solved

1.!If q is marked as solved, then return YES
2.!Is there a {p1,¬p2, ...,¬pn} ∈ KB such that

p2, ..., pn are marked as solved, but the 
positive lit p1 is not marked as solved?
! no:! return NO
! yes:! mark p1  as solved, and go to 1.

FirstGrade example:
! Marks:  FirstGrade, Child,  Female, Girl

! ! then done!

Observe:
• only letters in KB can be marked, so at most a linear 

number of iterations
• not  goal-directed, so not always desirable

A similar procedure with better data structures 
will run in linear time overall
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First-order undecidability

Even with just Horn clauses, in the first-order 
case we still have the possibility of generating an 
infinite branch of resolvents

KB:! LessThan(succ(x),y)  ⇒  LessThan(x,y)

Q:! LessThan(zero,zero)

As with full clauses, the best that can be 
expected is to give control of the deduction to the 
user

! to some extent this is what is done in Prolog,
but we will see more in “Procedural Control”

[¬LessThan(0,0)]

[¬LessThan(1,0)]

[¬LessThan(2,0)]

...

x/0, y/0

x/1, y/0

x/2, y/0

As with full Resolution,
there is no way to detect
when this will happen

So there is no procedure
that will test for satisfiability
of first-order Horn clauses

the question is undecidable


