
KR & R! © Brachman & Levesque 2005 Horn Logic

Horn clauses

Clauses are used two ways:
• as disjunctions: ! (rain ∨ sleet)

• as implications:! (¬child ∨ ¬male ∨ boy)

Here focus on 2nd use

Horn clause = at most one +ve literal in clause
• positive / definite clause = exactly one +ve literal

! [¬p1, ¬p2, ..., ¬pn, q]

• negative clause = no +ve literals
! [¬p1, ¬p2, ..., ¬pn]

Note
! [¬p1, ¬p2, ..., ¬pn, q] is a representation for

! (¬p1 ∨ ¬p2 ∨ ... ∨ ¬pn ∨ q)!or

! [(p1 ∧ p2 ∧ ... ∧ pn) ⊃ q]

So can read as
! If p1 and p2 and ... and pn then q

and write sometimes as
! ! p1 ∧ p2 ∧ ... ∧ pn ⇒ q

KR & R! © Brachman & Levesque 2005 Horn Logic

Resolution with Horn clauses

Only two possibilities:

It is possible to rearrange derivations (of negative
clauses) so that all new derived clauses are negative
clauses

Can also change derivations such that each derived
clause is a resolvent of the previous derived one (-ve)
and some +ve clause in the original set of clauses

! Since each derived clause is negative, one parent must be
positive (and so from original set) and one negative.

! Continue working backwards until both parents of derived
clause are from the original set of clauses

! Eliminate all other clauses not on direct path

Neg Pos

Neg

Pos Pos

Pos

[α, ¬q, p] [β, q]

[p, α, β][γ, ¬p]

[α, β, γ]

[α, ¬q, p]

[β, q][α, γ, ¬q]

[γ, ¬p]

[α, β, γ]
derived positive
clause to eliminate

the α, β, γ are
negative lits

KR & R! © Brachman & Levesque 2005 Horn Logic

SLD Resolution

Recurring pattern in derivations:

See previously:
• example 1
• example 3
• arithmetic example

But not:
• example 2
• 3 block example

An SLD-derivation of a clause c from a set of
clauses S is a sequence of clause c1, c2, ... cn
such that cn = c, and

1.! c1 ∈ S
2.! ci+1 is a resolvent of ci and a clause

in S

Write: S |⎯ c
SLD

Note: SLD derivation is just a special form of
derivation and where we leave out the elements of S
(except c1)

c1

c2

c3

cn

cn-1

new

old

SLD means S(elected) literals
 L(inear) form
 D(efinite) clauses

KR & R! © Brachman & Levesque 2005 Horn Logic

Completeness of SLD

In general, cannot restrict Resolution steps to
always use a clause that is in the original set

But can do so for Horn clauses...

Theorem: for Horn clauses, H |⎯ [] iff H |⎯ []
! So: H is unsatisfiable iff H |⎯ []
! This will considerably simplify the search

for derivations

Note: in Horn version of SLD-Resolution, each
clause c1, c2, ..., cn, will be negative

! So clauses H must always contain at least one
negative clause, c1.

Proof:
! S = {[p, q], [p, ¬q], [¬p, q] [¬p, ¬q]}
* ** * then S |⎯ [].
* Need to resolve some [l] and [¬l] to get [].
* But S does not contain any unit clauses.

! So will need to derive both [l] and
[¬l]* * and then resolve them together.

SLD

SLD

KR & R! © Brachman & Levesque 2005 Horn Logic

Example 1 (again)

KB:
! FirstGrade

! FirstGrade ⇒ Child

! Child ∧ Male ⇒ Boy

! Kindergarten ⇒ Child

* Child ∧ Female ⇒ Girl

* Female

Show KB ∪ {~Girl} unsatisfiable

[¬Girl]

[¬Child, ¬Female]

[¬Child]

[¬FirstGrade]

[]

or

A goal tree whose nodes are
atoms, whose root is the atom to
prove, and whose leaves are in
the KB

Girl

Child Female

FirstGrade

goal

solved

solved

KR & R! © Brachman & Levesque 2005 Horn Logic

Prolog

Horn clauses form the basis of Prolog

Append(nil,y,y)
Append(x,y,z) ⇒ Append(cons(w,x),y,cons(w,z))

With SLD derivation, can always extract answer from proof
! H |= ∃x α(x) iff for some term t, H |= α(t)

Different answers can be found by finding other derivations

Append(cons(a,cons(b,nil)), cons(c,nil), u)

Append(cons(b,nil), cons(c,nil), u′)

Append(nil, cons(c,nil), u′′)

solved:

u / cons(a,u′)

u′ / cons(b,u′′)

u′′ / cons(c,nil)

So goal succeeds with u = cons(a,cons(b,cons(c,nil)))
that is: Append([a b],[c],[a b c])

goal

KR & R! © Brachman & Levesque 2005 Horn Logic

Back-chaining procedure

Satisfiability of a set of Horn clauses with exactly
one negative clause

Solve[q1, q2, ..., qn] =!! /* to establish conjunction of qi */

! If n=0 then return YES; ! /* empty clause detected */

! For each d ∈ KB do
! If d = [q1, ¬p1, ¬p2, ..., ¬pm]* /* match first q */

! ! and ! ! /* replace q by -ve lits */

! Solve[p1, p2, ..., pm, q2, ..., qn]! /* recursively */

! then return YES
! end for; ! /* can't find a clause to eliminate q */

! Return NO

Depth-first, left-right, back-chaining
• depth-first because attempt pi before trying qi

• left-right because try qi in order, 1,2, 3, ...
• back-chaining because search from goal q to facts in KB p

This is the execution strategy of Prolog
! First-order case requires unification etc.

KR & R! © Brachman & Levesque 2005 Horn Logic

Problems with back-chaining

Can go into infinite loop
! tautologous clause: [p , ¬p]

! corresponds to Prolog program with p :- p.

Previous back-chaining algorithm is inefficient
! Example: consider 2n atoms: p1, ..., pn, q1, ..., qn

! ! and 4n - 4 clauses:
! ! ! (pi ⇒ pi+1), (qi ⇒ pi+1),
! ! (pi ⇒ qi+1), (qi ⇒ qi+1).

! ! with goal pn has execution tree like this

! ! search eventually fails after 2n steps!

pn

pn-1 qn-1

pn-2 qn-2 pn-2 qn-2

...

KR & R! © Brachman & Levesque 2005 Horn Logic

Forward-chaining

Simple procedure to determine if Horn KB |= q.
! main idea: mark atoms as solved

1.!If q is marked as solved, then return YES
2.!Is there a {p1,¬p2, ...,¬pn} ∈ KB such that

p2, ..., pn are marked as solved, but the
positive lit p1 is not marked as solved?
! no:! return NO
! yes:! mark p1 as solved, and go to 1.

FirstGrade example:
! Marks: FirstGrade, Child, Female, Girl

! ! then done!

Observe:
• only letters in KB can be marked, so at most a linear

number of iterations
• not goal-directed, so not always desirable

A similar procedure with better data structures
will run in linear time overall

KR & R! © Brachman & Levesque 2005 Horn Logic

First-order undecidability

Even with just Horn clauses, in the first-order
case we still have the possibility of generating an
infinite branch of resolvents

KB:! LessThan(succ(x),y) ⇒ LessThan(x,y)

Q:! LessThan(zero,zero)

As with full clauses, the best that can be
expected is to give control of the deduction to the
user

! to some extent this is what is done in Prolog,
but we will see more in “Procedural Control”

[¬LessThan(0,0)]

[¬LessThan(1,0)]

[¬LessThan(2,0)]

...

x/0, y/0

x/1, y/0

x/2, y/0

As with full Resolution,
there is no way to detect
when this will happen

So there is no procedure
that will test for satisfiability
of first-order Horn clauses

the question is undecidable

