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Reasoning about Actions

� McCarthy’s Advice Taker

I Improve program behaviour by making statements to it

I Program draws conclusions from its knowledge

I Declarative conclusion: new knowledge

I Imperative conclusion: take action

� Actions change the environment, modify fluents

I When you get on a bus, you are on the bus

I When you get off a bus, you are not on the bus

I When a bus moves, the position of the passengers changes

� Want to model such environments

I Action theory that models the actions and fluents

I What does this theory entail?
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Overview of the Lecture

� Three Problems

� The Situation Calculus

� Projection by regression

� Projection by progression

� Knowledge and sensing

� Concluding words
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Three Problems

Commonsense problems, seemingly easy, yet very hard to formalise:

1. The Qualification Problem

2. The Frame Problem

3. The Ramification Problem
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The Qualification Problem

An action can only be executed under certain circumstances.

The Qualification Problem

Represent the preconditions (qualifications) of an action.

Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.: You want to take a bus b to get to a destination d.
What must be true for this to be possible?

� Some qualifications are more important than others

I Important qualification: d is on b’s route
I Minor qualification: fuel, driver, keys, . . .

� Impractical to list all minor preconditions

� Non-monotonic reasoning

I Action is possible when all important qualifications hold,

unless a minor qualification prevents it

I Not specific to actions: a bird flies unless it’s abnormal
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The Frame Problem

Most fluents are not affected by an action.

The Frame Problem

Represent what is left unchanged by an action (frame axioms).

Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.: You don’t magically disappear from the bus when it moves.

The weather also remains unchanged when the bus moves.

� Frame axioms specify what does not change
I If you are on a bus, then you’re still on the bus when it moves.

I If you are not on a bus, then you’re still not on the bus when it moves.

� A actions, F fluents =⇒ about 2 × A × F frame axioms

I 100 actions, 100 fluents =⇒ 20000 frame axioms

I Impractical to write down

I Need to generate them or represent them implicitly
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State Constraints

State constraints must be satisfied over the course of actions.

The Ramification Problem

Represent indirect effects caused by state constraints.

Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.: If you’re on the bus, your location is where the bus is.

You cannot be at two busses at once.

� Indirect effect: action effects must adhere to state constraints

� Indirect qualification: action allowed only if state constraint

won’t be violated

� Constraints can often be compiled to qualifications, effects

I When a bus moves, its passengers move along

I You can get on a bus only if you’re not on a bus already
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Our Approach (due to Ray Reiter)

We’ll focus on the frame problem.

The Frame Problem

Represent what is left unchanged by an action.

� Simple solution to the frame problem due to Reiter:

F holds after a ⇐⇒ a enables F or
F holds before a and a does not disable F

� Ignore the minor qualifications

� Compile state constraints to qualifications and effects

Want: a way to generate frame axioms from given effect axioms. Why?
� Modularity: could easily add new fluents / actions

� Accuracy: wouldn’t forget frame axioms
8 / 38



Overview of the Lecture

� Three Problems

� The Situation Calculus

� Projection by regression

� Projection by progression

� Knowledge and sensing

� Concluding words
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The Language of the Situation Calculus

Terms of two different sorts:
� Variables, standard names, functions of sort

{
object

action

� For simplicity: no nested functions, function only on left-hand

side

� Special condition: action term A(n1, . . . ,nj) is standard name

Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.: IfM50 is an object standard name and getOn is an action
function, then getOn(M50) is an action standard name.
Then |= getOn(M50) 6= getOff 6= goTo(M50,Uni) 6= . . .!

Formulas:
� P(t1, . . . , tj) t1 = t2 ¬α (α ∨ β) ∃xα

� [t]α α holds after action t
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Examples and Convention

� You don’t fall off the bus when the bus moves:

�
(
∀b1∀b2∀d

(
On(b1)→ [goTo(b2, d)]On(b1)

))
� You cannot be on two busses at once:

�
(
∀b1∀b2

(
b1 6= b2 → ¬On(b1) ∨ ¬On(b2)

))
� F holds after a ⇐⇒ a enables F or

F holds before a and a does not disable F
�
(
∀a∀~x

(
[a]F(~x)↔ γ+ ∨ (F(~x) ∧ ¬γ−)

))
Convention:

� ∀~t stands for ∀t1 . . .∀tj , F(~t) for F(t1, . . . , tj)

� Operator� has maximum scope

� Free variables are implicitly universally quantified

� We sometimes identify a (finite) set Σ of sentences {α1, . . . ,αj} with the
conjunction α1 ∧ . . . ∧ αj
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Worlds and Situations

w[On(M50), 〈〉] = 0

w[pos, 〈〉] = Central

w[On(M50), getOn(M50)] = 1

w[pos, getOn(M50)] = Central

w[On(M50), getOn(M50) · goTo(M50,Uni)] = 1

w[pos, getOn(M50) · goTo(M50,Uni)] = Uni

Tree view of w:

. . .. . .

. . .. . .

. . .. . .

goTo(M50,Uni)getOn(M50)

. . .
. . .

. . .

getOff

¬On(M50)
pos = Central

On(M50)
pos = Central

On(M50)
pos = Uni
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Worlds and Situations (2)

Definition: situation, world

A situation z is a sequence of action standard names.

A world w is a function that maps
� primitive functions f(~n) and situations to standard names, and
� primitive atomic formulas P(~n) and situations to {0,1}.

The denotation of a ground term w.r.t. w in z is defined as

� w(n, z) def

= n for every standard name n

� w(f(n1, . . . ,nj), z)
def

= w[f(n1, . . . ,nj), z]

Recall: for simplicity we don’t consider nested functions, so f can only be applied
to variables or names
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The Semantics of the Situation Calculus

Definition: semantics

� w, z |= P(t1, . . . , tj) ⇐⇒ w[P(w(t1, z), . . . ,w(tj, z), z] = 1

� w, z |= t1 = t2 ⇐⇒ w(t1, z) = w(t2, z)

� w, z |= ¬α ⇐⇒ w, z 6|= α

� w, z |= (α ∨ β) ⇐⇒ w, z |= α or w, z |= β

� w, z |= ∃xα ⇐⇒ w, z |= α x
n for some std. name n of x’s sort

� w, z |= [n]α ⇐⇒ w, z · n |= α

� w, z |= �α ⇐⇒ w, z · z′ |= α for all situations z′

Σ |= α ⇐⇒ for all w, if w, 〈〉 |= β for all β ∈ Σ, then w, 〈〉 |= α
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Example

w |= ¬On(b)

w |= [getOn(b)]On(b)

w |= [getOn(b)][goTo(b, d)]On(b)

w |= [getOn(b)][goTo(b, d)]pos = d

w |= ∃a1∃a2 [a1][a2]pos = d

. . .. . .

. . .. . .

. . .. . .

goTo(b, d)getOn(b)

. . .
. . .

. . .

getOff

¬On(b)

On(b)

On(b)
pos = d

15 / 38



Solving the Frame Problem – Reiter’s Idea

When are we on a bus?

Effect axioms:

Assume causal completeness, i.e., assume:
�¬On(b) ∧ [a] On(b)→ a = getOn(b)

� On(b) ∧ [a]¬On(b)→ a = getOff

So we get:

� [a]On(b)↔ a = getOn(b) ∨ (On(b) ∧ ¬a = getOff)

Done! This is called a successor-state axiom.

Proof on paper
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Successor-State Axioms

Definition: successor-state axiom

A successor-state axiom has the form
� [a]F(~x)↔ γF

or

� [a]f(~x) = y↔ γf
where γF,γf do not mention� or [t] operators.

Typical form of

� γF is γ+F ∨ (F(~x) ∧ ¬γ−F )
� γf is γ+f ∨ (f(~x) = y ∧ ¬∃y′γ+f

y
y′)

Make sure that |= γf
y
y1 ∧ γf

y
y2 → y1 = y2. Otherwise: inconsistency!
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Examples

� You’re on a bus ⇐⇒ you got on it or
you were on it and didn’t get off it:

� [a]On(b)↔ a = getOn(b) ∨ (On(b) ∧ a 6= getOff)

� Your position is p ⇐⇒ you were on a bus that moved to p or
you were at p already and not on a bus that moved:

� [a]pos = p↔ ∃b
(
a = goTo(b, p) ∧ On(b)

)
∨(

pos = p ∧ ¬∃d∃b(a = goTo(b, d) ∧ On(b))
)

18 / 38



Basic Action Theories

An action theory must describe

� the initial situation

� how fluents change =⇒ successor-state axioms

� the action preconditions =⇒ axiom for Poss(a)

Definition: basic action theory

Σ0 ∧ Σdyn is a basic action theory over a set of fluents F iff
� Σdyn contains a successor-state axiom for every fluent in F
� Σdyn contains an axiom�Poss(a)↔ π

� Σ0,πmention no Poss,� , [t].
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Example: the Bus Scenario as Basic Action Theory

a = action, b = bus, d = destination, p = position

� The initial situation:

pos = Central ∧ Route(M50,Uni)

� You can get on/off a bus:

� [a]On(b)↔ a = getOn(b) ∨ (On(b) ∧ a 6= getOff)

� You can move by being on a bus that moves:

� [a]pos = p↔ ∃b
(
a = goTo(b, p) ∧ On(b)

)
∨(

pos = p ∧ ¬∃d∃b(a = goTo(b, d) ∧ On(b))
)

� You can’t get on (off) a bus when you’re on one (none), and a

bus can only go along its route:

�Poss(a)↔
(
∃ba = getOn(b)→ ∀b¬On(b)

)
∧(

a = getOff→ ∃bOn(b)
)
∧

∀b∀d
(
a = goTo(b, d)→ Route(b, d)

)
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The Projection Problem

The central task in reasoning about actions:

Definition: projection problem

Given a basic action theory:

Is a goal formula true in a future situation?

Σ0 ∧ Σdyn |= [t1] . . . [tj]α

Want: a way to eliminate [t] operators.

Two approaches:

� : reduce to Σ0 |= α∗

� : reduce to Σ∗0 ∪ Σdyn |= α
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Overview of the Lecture

� Three Problems

� The Situation Calculus

� Projection by regression

� Projection by progression

� Knowledge and sensing

� Concluding words
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Regression – The Idea

� Successor state axioms relate truth after a to truth before a:
� [a]F(~x)↔ γF , where γF mentions no [t]

� Idea: successively replace [r]F(~t) with γF
a ~x
r~t

� Result: Σ0 ∪ Σdyn |= [t1] . . . [tj]α reduces to Σ0 ∪ Σdyn |= α∗

� Good: very simple and quite elegant

� Bad: α∗ may grow exponentially
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Regression

Definition: regression operator, objective part

Regression of α is defined w.r.t. a basic action theory where γF,γf
are the RHSs of the successor-state axioms and π is the RHS of the

Poss axiom. We assume no variable in α is quantified twice in the
same scope (as in ∃x (α ∨ ∃xβ)):

� R[z · r, F(~t)] def= R[z,γF
a ~x
r~t ]

� R[z · r, f(~t) = t0]
def

= R[z,γf
a ~x y
r~t t0

] if f is a function of sort object

� R[〈〉, F(~t)] def= F(~t)
� R[〈〉, f(~t) = t0]

def

= f(~t) = t0 if f is a function of sort object

� R[〈〉, t1 = t0]
def

= t1 = t0 if t1 is not a function of sort object

� R[z,Poss(t)] def= R[z,π a
t ]

� R[z, (α ∨ β)] def= (R[z,α] ∨R[z,β])
� R[z,¬α] def= ¬R[z,α]
� R[z, ∃xα] def= ∃xR[z,α]
� R[z, [t]α] def= R[z · t,α]

The first parameter inR[z,α] is the “situation stack”.
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The Regression Result

Theorem: regression

Let Σ0 ∧ Σdyn be a basic action theory over F .
Let αmention only fluents from F ∪ {Poss} and no� .

Σ0 ∪ Σdyn |= α ⇐⇒ Σ0 |= R[〈〉,α]
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Example

Let Σ0 ∪ Σdyn be the bus scenario.

Σ0 ∪ Σdyn |= [getOn(M50)][goTo(M50,Uni)]pos = Uni ?

⇔ Σ0 |= R[〈〉, [getOn(M50)][goTo(M50,Uni)]pos = Uni]

⇔ Σ0 |= R[getOn(M50) · goTo(M50,Uni), pos = Uni]

⇔ Σ0 |= R[getOn(M50),γpos
a
goTo(M50,Uni)

p
Uni]

⇔ Σ0 |= ∃b
(
goTo(M50,Uni) = goTo(b,Uni)∧R[getOn(M50),On(b)]

)
∨ . . .

⇔ Σ0 |= ∃b
(
goTo(M50,Uni) = goTo(b,Uni) ∧R[〈〉,γOn

a
getOn(M50)

b
b]
)
∨ . . .

⇔ Σ0 |= ∃b
(
goTo(M50,Uni) = goTo(b,Uni) ∧(
getOn(M50) = getOn(b) ∨
(R[〈〉,On(b)] ∧ getOn(M50) 6= getOff)

))
∨ . . .

⇔ Σ0 |= ∃b
(
M50 = b ∧

(
M50 = b ∨R[〈〉,On(b)]

))︸ ︷︷ ︸
Valid if b isM50. So the whole formula is valid and hence entailed byΣ0.

∨ . . . 3
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Example � [a]pos = p↔ ∃b
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Progression – The Idea

� Want a new Σ0 after action t

� Idea: use γF
a ~x
r~t to initialise new F(~t), forget old F(~t)

� Result: Σ0 ∪ Σdyn |= [t1] . . . [tj]α reduces to Σ
∗
0 ∪ Σdyn |= α

� Progression is the dual to regression

� Big problem: forgetting is very hard to formalise!

I Requires second-order logic in general

I Second-order logic features quantification over predicates/functions

I Actions like goTo(b, d) cause the problem
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Overview of the Lecture

� Three Problems

� The Situation Calculus

� Projection by regression

� Projection by progression

� Knowledge and sensing

� Concluding words
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Knowledge and Sensing

� New formulas: Kα Oα

� Predicate SF(t) represents sensing result of action t

Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.: You ask the driver whether the bus is going to UNSW

� “Yes” =⇒ you know the bus going to UNSW

� “No” =⇒ you know the bus is not going to UNSW

Formalisation of knowledge and sensing:

� Set of possible worlds e
� Doing A tells you the value of SF(A) in real world w
� Only consider those w′ ∈ e which agree with w

If w says bus goes to UNSW, only consider w′
where bus goes to UNSW
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The Semantics of Knowledge and Sensing

Definition: semantics of knowledge and sensing

w 'z w′ ⇐⇒ w,w′ agree on the sensing results:
� w '〈〉 w′

� w 'z·n w′ ⇐⇒ w 'z w′ and w[SF(n), z] = w′[SF(n), z]

An epistemic state e is a set of worlds.

� Rules from Slide 14 retrofitted with additional e parameter,
e.g., e,w, z |= ¬α ⇐⇒ e,w, z 6|= α

� e,w, z |= Kα ⇐⇒ for all worlds w′,
w′ ∈ e and w 'z w′⇒ e,w′, z |= α

� e,w, z |= Oα ⇐⇒ for all worlds w′,
w′ ∈ e and w 'z w′⇔ e,w′, z |= α

Σ |= α ⇐⇒ for all e,w, if e,w, 〈〉 |= β for all β ∈ Σ, then e,w, 〈〉 |= α
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Basic Action Theories with Knowledge

An action theory must describe

� what is true the initial situation

� what is known about the initial situation
� how fluents change =⇒ successor-state axioms

� the action preconditions =⇒ axiom for Poss(a)
� how sensing works =⇒ axiom for SF(a)

Definition: basic action theory

Σ0 ∧ Σdyn ∧O(Σ1 ∧ Σdyn) is a basic action theory over F iff
� Σdyn contains a successor-state axiom for every fluent in F
� Σdyn contains an axiom�Poss(a)↔ π

� Σdyn contains an axiom�SF(a)↔ ϕ

� Σ0,Σ1,π,ϕmention no Poss, SF,� , [t].
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Example: the Bus Scenario as Basic Action Theory

� What is true, what is known initially:

Σ0
def

= pos = Central ∧ Route(M50,Uni)

Σ1
def

= pos = Central

� � [a]On(b)↔ a = getOn(b) ∨ (On(b) ∧ a 6= getOff)

� � [a]pos = p↔ ∃b
(
a = goTo(b, p) ∧ On(b)

)
∨(

pos = p ∧ ¬∃d∃b(a = goTo(b, d) ∧ On(b))
)

� �Poss(a)↔
(
∃ba = getOn(b)→ ∀b¬On(b)

)
∧(

a = getOff→ ∃bOn(b)
)
∧

∀b∀d
(
a = goTo(b, d)→ Route(b, d)

)
� You can ask and learn whether the bus stops at a destination:

�SF(a)↔ ∀b∀d
(
a = ask(b, d)→ Route(b, d)

)
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Regression of Knowledge

Theorem: knowledge after action

|= [a]Kα↔ (SF(a)→ K(SF(a)→ [a]α)) ∧
(¬SF(a)→ K(¬SF(a)→ [a]α))

Looks like a successor-state axiom, but it’s a theorem!

Definition: regression operator, subjective part

� R[〈〉,Kα] def= KR[〈〉,α]
� R[z · r,Kα] def= R[z,

(
SF(r)→ K(SF(r)→ [r]α)

)
] ∧

R[z,
(
¬SF(r)→ K(¬SF(r)→ [r]α)

)
]

� R[z,SF(t)] def= R[z,ϕ a
t ]
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The Regression Result with Knowledge

Theorem: regression

Let Σ0 ∧ Σdyn ∧O(Σ1 ∧ Σdyn) be a basic action theory over F .
Let αmention only fluents from F ∪ {Poss,SF} and no O or� .
Σ0 ∧ Σdyn ∧O(Σ1 ∧ Σdyn) |= α ⇐⇒ Σ0 ∧OΣ1 |= R[〈〉,α]

Reasoning about actions + knowledge

+ Regression (eliminates [t])

+ Representation theorem (eliminates K )

= Non-modal reasoning!
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Relationship to Planning

� Modelling dynamic systems is core AI

� In the beginning (1950ies, 1960ies):

reasoning about action= planning

� McCarthy’s situation calculus (1963, 1969):

too expressive, impractical

� Shakey introduced STRIPS for planning

� Reasoning about action and planning diverged

� Past years: they converge again

I Reasoning action gets more efficient

I Planning gets more expressive

I Both sides benefit
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Relevant Questions?

Reasoning about Knowledge
� Why not classical logic?

Semantics of knowledge
� How is Kα defined?

� How is Oα defined?

� How does quantification work?

Knowing that vs knowing what/who
� What’s the difference?

� Why is that semantic difference?

Representation theorem
� What are known instances?

� How does RES do it?

Logical Omniscience
� What does it mean?

� Why is it a problem?

Limited belief I
� Why more worlds?

� What is true/false support?

� When good/bad complexity?

� Why?

Limited belief II
� What’s unit propagation?

� What’s subsumption?

� How is Kkα defined?

� Soundness vs completeness?

Implementation
� How does DPLL work?

� Idea behind watched lits?

� Idea behind CDCL?

Reasoning about actions
� What are the problems?

Solution of frame problem
� What’s a succ.-state axiom?

� What’s a basic action theory?

Projection
� What’s the projection task?

� What are the approaches?

� How does regression work?

Semantics of actions
� How are worlds defined?

� What does SF(t)mean?
� How is Kα defined in sitcalc?

This list is not intended to be exhaustive.

38 / 38


