Reasoning about Actions

Christoph Schwering
UNSW Sydney

COMP4418, Week 9

Reasoning about Actions

B McCarthy's Advice Taker
Improve program behaviour by making statements to it
Program draws conclusions from its knowledge

» Declarative conclusion: new knowledge
» Imperative conclusion: take action

2/38

Reasoning about Actions

B McCarthy's Advice Taker

Improve program behaviour by making statements to it
Program draws conclusions from its knowledge

» Declarative conclusion: new knowledge
» Imperative conclusion: take action

B Actions change the environment, modify fluents

When you get on a bus, you are on the bus
When you get off a bus, you are not on the bus
When a bus moves, the position of the passengers changes

2/38

Reasoning about Actions

B McCarthy's Advice Taker

Improve program behaviour by making statements to it
Program draws conclusions from its knowledge

» Declarative conclusion: new knowledge
» Imperative conclusion: take action

B Actions change the environment, modify fluents

When you get on a bus, you are on the bus
When you get off a bus, you are not on the bus
When a bus moves, the position of the passengers changes

B Want to model such environments

Action theory that models the actions and fluents
What does this theory entail?

2/38

Overview of the Lecture

B Three Problems

The Situation Calculus

Projection by regression

Projection by progression

Knowledge and sensing

Concluding words

3/38

Three Problems

Commonsense problems, seemingly easy, yet very hard to formalise:
1. The Qualification Problem
2. The Frame Problem

3. The Ramification Problem

4/38

The Qualification Problem

An action can only be executed under certain circumstances.

5/38

The Qualification Problem

An action can only be executed under certain circumstances.

The Qualification Problem

Represent the preconditions (qualifications) of an action.

5/38

The Qualification Problem

An action can only be executed under certain circumstances.

The Qualification Problem

Represent the preconditions (qualifications) of an action.

Ex.: You want to take a bus b to get to a destination d.
What must be true for this to be possible?

5/38

The Qualification Problem
An action can only be executed under certain circumstances.

The Qualification Problem

Represent the preconditions (qualifications) of an action.

Ex.: You want to take a bus b to get to a destination d.
What must be true for this to be possible?

B Some qualifications are more important than others
» Important qualification: d is on b's route
» Minor qualification: fuel, driver, keys, ...

5/38

The Qualification Problem
An action can only be executed under certain circumstances.

The Qualification Problem

Represent the preconditions (qualifications) of an action.

Ex.: You want to take a bus b to get to a destination d.
What must be true for this to be possible?

B Some qualifications are more important than others
» Important qualification: d is on b's route
» Minor qualification: fuel, driver, keys, ...

B Impractical to list all minor preconditions

5/38

The Qualification Problem

An action can only be executed under certain circumstances.

The Qualification Problem

Represent the preconditions (qualifications) of an action.

Ex.: You want to take a bus b to get to a destination d.
What must be true for this to be possible?

B Some qualifications are more important than others
Important qualification: d is on b's route
Minor qualification: fuel, driver, keys, ...

B Impractical to list all minor preconditions

B Non-monotonic reasoning
Action is possible when all important qualifications hold,
unless a minor qualification prevents it
Not specific to actions: a bird flies unless it's abnormal

5/38

The Frame Problem

Most fluents are not affected by an action.

6/38

The Frame Problem

Most fluents are not affected by an action.

The Frame Problem

Represent what is left unchanged by an action (frame axioms).

6/38

The Frame Problem

Most fluents are not affected by an action.

The Frame Problem

Represent what is left unchanged by an action (frame axioms).

Ex.: You don't magically disappear from the bus when it moves.
The weather also remains unchanged when the bus moves.

6/38

The Frame Problem

Most fluents are not affected by an action.

The Frame Problem

Represent what is left unchanged by an action (frame axioms).

Ex.: You don't magically disappear from the bus when it moves.
The weather also remains unchanged when the bus moves.

B Frame axioms specify what does not change

» If you are on a bus, then you're still on the bus when it moves.
» If you are not on a bus, then you're still not on the bus when it moves.

6/38

The Frame Problem

Most fluents are not affected by an action.

The Frame Problem

Represent what is left unchanged by an action (frame axioms).

Ex.: You don't magically disappear from the bus when it moves.
The weather also remains unchanged when the bus moves.

B Frame axioms specify what does not change

If you are on a bus, then you're still on the bus when it moves.
If you are not on a bus, then you're still not on the bus when it moves.

B A actions, F fluents = about 2 x A x F frame axioms

100 actions, 100 fluents — 20000 frame axioms
Impractical to write down

Need to generate them or represent them implicitly

6/38

State Constraints

State constraints must be satisfied over the course of actions.

7/38

State Constraints

State constraints must be satisfied over the course of actions.

The Ramification Problem

Represent indirect effects caused by state constraints.

7738

State Constraints

State constraints must be satisfied over the course of actions.

The Ramification Problem

Represent indirect effects caused by state constraints.

Ex.: If you're on the bus, your location is where the bus is.
You cannot be at two busses at once.

7738

State Constraints

State constraints must be satisfied over the course of actions.

The Ramification Problem

Represent indirect effects caused by state constraints.

Ex.: If you're on the bus, your location is where the bus is.
You cannot be at two busses at once.

B Indirect effect: action effects must adhere to state constraints

7738

State Constraints

State constraints must be satisfied over the course of actions.

The Ramification Problem

Represent indirect effects caused by state constraints.

Ex.: If you're on the bus, your location is where the bus is.
You cannot be at two busses at once.

B Indirect effect: action effects must adhere to state constraints

B Indirect qualification: action allowed only if state constraint
won't be violated

7/38

State Constraints

State constraints must be satisfied over the course of actions.

The Ramification Problem

Represent indirect effects caused by state constraints.

Ex.: If you're on the bus, your location is where the bus is.
You cannot be at two busses at once.

B Indirect effect: action effects must adhere to state constraints

B Indirect qualification: action allowed only if state constraint
won't be violated

B Constraints can often be compiled to qualifications, effects

When a bus moves, its passengers move along
You can get on a bus only if you're not on a bus already

7/38

Our Approach (due to Ray Reiter)

We'll focus on the frame problem.

The Frame Problem

Represent what is left unchanged by an action.

B Simple solution to the frame problem due to Reiter:
F holds aftera <= a enablesF or
F holds before a and a does not disable F

B Ignore the minor qualifications

B Compile state constraints to qualifications and effects

Want: a way to generate frame axioms from given effect axioms. Why?
B Modularity: could easily add new fluents / actions

B Accuracy: wouldn't forget frame axioms
8/38

Overview of the Lecture

B Three Problems

The Situation Calculus

Projection by regression

Projection by progression
B Knowledge and sensing

B Concluding words

9/38

The Language of the Situation Calculus
Terms of two different sorts:
object

B Variables, standard names, functions of sort)
action

10/38

The Language of the Situation Calculus
Terms of two different sorts:

object
B Variables, standard names, functions of sort J

action
B For simplicity: no nested functions, function only on left-hand

side

B Special condition: action term A(ny, ..., n;) is standard name

10/38

The Language of the Situation Calculus
Terms of two different sorts:
bject
B Variables, standard names, functions of sort © J.ec
action

B For simplicity: no nested functions, function only on left-hand
side

B Special condition: action term A(ny, . .., nj) is standard name

Ex.: If M50 is an object standard name and getOn is an action
function, then getOn(M50) is an action standard name.

10/ 38

The Language of the Situation Calculus
Terms of two different sorts:
bject
B Variables, standard names, functions of sort © J.ec
action

B For simplicity: no nested functions, function only on left-hand
side

B Special condition: action term A(ny, . .., nj) is standard name

Ex.: If M50 is an object standard name and getOn is an action
function, then getOn(M50) is an action standard name.
Then [= getOn(M50) # getOff # goTo(M50, Uni) # .. .!

10/ 38

The Language of the Situation Calculus

Terms of two different sorts:
object

B Variables, standard names, functions of sort)
action

B For simplicity: no nested functions, function only on left-hand
side
B Special condition: action term A(ny, . .., nj) is standard name

Ex.: If M50 is an object standard name and getOn is an action
function, then getOn(M50) is an action standard name.
Then [= getOn(M50) # getOff # goTo(M50, Uni) # .. .!

Formulas:
B P(ty,....t5) ti=tz - (xVP) Ixx
B tjx o holds after action t
B x « holds after any sequence of actions

B Predicate Poss(t) represents precondition of action t

10/ 38

Examples and Convention

B You don't fall off the bus when the bus moves:
O (Vb1VYboVd (On(b1) — [goTo(bz,d)]On(b)))

B You cannot be on two busses at once:
O (Vbl Vby (bl %+ by — —\Oll(bl) vV ﬁOIl(bz)))

W F holds aftera <= a enablesF or
F holds before a and a does not disable F
O (Vavx ([a]F(X) <>y V (FX) A —y7)))

Convention:
BVt stands for Vt; ...Vt;, F(f) for F(ta, ..., t)

11/38

Examples and Convention

B You don't fall off the bus when the bus moves:
O (Vb1 Vb Vd (On(b1) — [goTo(bz,d)]On(b))

B You cannot be on two busses at once:
O (Vb1 Vby (bl %+ by — —\Oll(bl) vV ﬁOIl(bz))

W F holds aftera <= a enablesF or
F holds before a and a does not disable F
O (VaVx ([a]F(X) <> y© V (F(X¥) A=y 7))

Convention:

BVt stands for Vt; ...Vt;, F(f) for F(ta, ..., t)

B Operator [0 has maximum scope

11/38

Examples and Convention

B You don't fall off the bus when the bus moves:
O On(by) — [goTo(ba,d)|On(b1)

B You cannot be on two busses at once:
O b1 #by — —\Oll(bl) V ﬁOIl(bz)

B F holds aftera < a enables F or
F holds before a and a does not disable F
O [alF (&) ¢ vV (FE) Ay

Convention:
BVt stands for Vt; ...Vt;, F(f) for F(ta, ..., t)
B Operator [0 has maximum scope

B Free variables are implicitly universally quantified

11/38

Examples and Convention

B You don't fall off the bus when the bus moves:
OOn(by) — [goTo(bz,d)]On(by)

B You cannot be on two busses at once:
Oby #by — ﬂOn(bl) vV ﬂOn(bz)

B F holds aftera < a enables F or
F holds before a and a does not disable F
O[QF®E) vtV (FE A7)

Convention:
B V{ stands for V1 ...Vt;, F(f) for F(ta, ..., t)
B Operator [0 has maximum scope

B Free variables are implicitly universally quantified

11/38

Examples and Convention

B You don't fall off the bus when the bus moves:

OOn(by) — [goTo(bz,d)]On(by)

B You cannot be on two busses at once:

Ob; #* by — ﬂOn(bl) V ﬂOn(bz)

F holds aftera <= a enables F or

F holds before a and a does not disable F

OfalF(x) ¢ y* Vv (F&) A—=y7)

Convention:

Vt stands for Vt; ...V, F(F) for F(t1,. .., t)
Operator [J has maximum scope
Free variables are implicitly universally quantified

We sometimes identify a (finite) set X of sentences {«,
conjunction oy A ... A &

..., &} with the

11/38

Worlds and Situations
w[On(M50), ()] =0

pos, ()] = Central

On(M50), getOn(M50)] =1

pos, getOn(M50)] = Central

On(M50), getOn(M50) - goTo(M50, Uni)] = 1

pos, getOn(M50) - goTo(M50, Uni)| = Uni

=

w

w

w

w

12/38

Worlds and Situations
w[On(M50), ()] =0

pos, ()] = Central

On(M50), getOn(M50)] =1

pos, getOn(M50)] = Central

On(M50), getOn(M50) - goTo(M50, Uni)] = 1

pos, getOn(M50) - goTo(M50, Uni)| = Uni

=

w

w

w

w

Tree view of w:

gt
— - On(Ms50)
—-On(M50) Uni) pos=Uni ... e
= & M50, U
) T e

On(M50)
pos = Central

12/38

Worlds and Situations (2)

Definition: situation, world

A situation z is a sequence of action standard names.

13/38

Worlds and Situations (2)

Definition: situation, world

A situation z is a sequence of action standard names.

A world w is a function that maps
m primitive functions f (1) and situations to standard names, and
B primitive atomic formulas P(7) and situations to {0, 1}.

13/38

Worlds and Situations (2)

Definition: situation, world

A situation z is a sequence of action standard names.

A world w is a function that maps
m primitive functions f (1) and situations to standard names, and
B primitive atomic formulas P(7) and situations to {0, 1}.

The denotation of a ground term w.r.t. w in z is defined as

def
® w(n,z) = nfor every standard name n

B w(f(ni,...,n),2) £ wlf(n,...,n),2]

Recall: for simplicity we don't consider nested functions, so f can only be applied
to variables or names

13/38

The Semantics of the Situation Calculus

Definition: semantics

B w,z=P(t,....t) < wPWw(t1,2),...,w(tj,z),z] =1

B w2zt =ty < w(t1,2) =w(ty,2)

14 /38

The Semantics of the Situation Calculus

Definition: semantics

B w,z=P(t,....t) < wPWw(t1,2),...,w(tj,z),z] =1
B w2zt =ty < w(t1,2) =w(ty,2)
BwzEx <= w2l

BwzkE(xVpP) <= w,zE=aorw,z=f

B w2 dxa <= w,z = «f for some std. name n of x’s sort

14 /38

The Semantics of the Situation Calculus

Definition: semantics

B w,z=P(t,....t) < wPWw(t1,2),...,w(tj,z),z] =1

B w2zt =ty < w(t1,2) =w(ty,2)

BwzEx <= w2l

BwzkE(xVpP) <= w,zE=aorw,z=f

B w2 dxa <= w,z = «f for some std. name n of x’s sort
BwzlEna < wz-nkEa

Bw,zEOx < w,z -2 = «forall situations 2’

L E o < forallw, ifw,() Epforall € L, thenw, () = «

14 /38

Example

w = -On(b
w = [getOn(b)]On(b)

w = [getOn(b)][goTo(b,d)]On(b)
w = [getOn(b)][goTo(b, d)]pos =
w = Jai Jaz [a1][az]pos =

/\/\/-\\/

On(b)
—On(b) pos =d

On(b)

15/38

Solving the Frame Problem - Reiter’s Idea

When are we on a bus?

16/38

Solving the Frame Problem - Reiter’s Idea
When are we on a bus?
Effect axioms:
O [getOn(b)]On(b)
O [getOff]-On(b)

16/38

Solving the Frame Problem - Reiter’s Idea
When are we on a bus?
Effect axioms:
Oa = getOn(b) — [a]On(b)
Oa = getOff — [a]-On(b)

16/ 38

Solving the Frame Problem - Reiter’s Idea
When are we on a bus?
Effect axioms:
Oa = getOn(b) — [a]On(b)
Oa = getOff — [a]-On(b)
Assume causal completeness, i.e., assume:
O-0n(b) A [a] On(b) — a = getOn(b)
O On(b) A [a]-On(b) — a = getOff

16/ 38

Solving the Frame Problem - Reiter’s Idea
When are we on a bus?
Effect axioms:
Oa = getOn(b) — [a]On(b)
Oa = getOff — [a]-On(b)

Assume causal completeness, i.e., assume:
[0-On(b) A [a] On(b) — a = getOn(b)
O On(b) A [a]-On(b) — a = getOff

So we get:
O [a]On(b) <+ a = getOn(b) V (On(b) A —~a = getOff)
Done! This is called a successor-state axiom.

Proof on paper

16/ 38

Successor-State Axioms

Definition: successor-state axiom

A successor-state axiom has the form
O [a]F(X) < v
or
Ofaf () =y < vy
where yr,ys do not mention [J or [t] operators.

17738

Successor-State Axioms

Definition: successor-state axiom

A successor-state axiom has the form
O [a]F(X) < v
or
Ofaf () =y < vy
where yr,ys do not mention [J or [t] operators.

Typical form of

B yr is vE V(F(X)AvE)
myris vy V@) =y A= v)

17 /38

Successor-State Axioms

Definition: successor-state axiom

A successor-state axiom has the form
O [a]F(X) < v
or
Ofaf () =y < vy
where yr,ys do not mention [J or [t] operators.

Typical form of
B yr is vy V(FX)A-vy)
m s vf V() =y A3V)

Make sure that = v, AYf3, — Y1 =Y2. Otherwise: inconsistency!

17 /38

Examples

B You're on a bus <= you gotonitor

you were on it and didn't get off it:

O [a]On(b) <+ a = getOn(b) V (On(db) A a # getOff)

B Your position is p <= you were on a bus that moved to p or

you were at p already and not on a bus that moved:

O [a]pos =p «» 3b (a = goTo(b,p) A On(b)) v
(pos =p A ~3d3b (a = goTo(b,d) A On(b)))

18/38

Basic Action Theories

An action theory must describe
B the initial situation

19/38

Basic Action Theories

An action theory must describe
B theinitial situation
B how fluents change = successor-state axioms

19/38

Basic Action Theories

An action theory must describe
B theinitial situation
B how fluents change = successor-state axioms
B the action preconditions = axiom for Poss(a)

19/38

Basic Action Theories

An action theory must describe
B theinitial situation
B how fluents change = successor-state axioms
B the action preconditions = axiom for Poss(a)

Definition: basic action theory

Lo A Lgyn is a basic action theory over a set of fluents F iff
B X4y, contains a successor-state axiom for every fluent in #
B X4, contains an axiom O Poss(a) « 7
B X, 7t mention no Poss, (I, [t].

19/38

Example: the Bus Scenario as Basic Action Theory
a = action, b = bus, d = destination, p = position

B The initial situation:
pos = Central A Route(M50, Uni)

20/38

Example: the Bus Scenario as Basic Action Theory
a = action, b = bus, d = destination, p = position

B The initial situation:
pos = Central A Route(M50, Uni)

B You can get on/off a bus:
Oa]On(b) <» a = getOn(b) V (On(b) A a # getOff)

20/38

Example: the Bus Scenario as Basic Action Theory
a = action, b = bus, d = destination, p = position

B The initial situation:
pos = Central A Route(M50, Uni)

B You can get on/off a bus:

Oa]On(b) <» a = getOn(b) V (On(b) A a # getOff)

B You can move by being on a bus that moves:
O [a]pos =p <+ 3b (a = goTo(b,p) A On(b)) V
(pos =p A =3d3b (a = goTo(b,d) A On(b)))

20/38

Example: the Bus Scenario as Basic Action Theory

a = action, b = bus, d = destination, p = position

B The initial situation:
pos = Central A Route(M50, Uni)

B You can get on/off a bus:
O [a]On(b) <+ a = getOn(b) V (On(b) A a # getOff)

B You can move by being on a bus that moves:
O [a]pos =p < 3b (a = goTo(b,p) A On(b)) v
(pos =p A =3d3b (a = goTo(b,d) A On(b)))

B You can't get on (off) a bus when you're on one (none), and a
bus can only go along its route:
OPoss(a) > (3ba = getOn(b) — VYb—On(b)) A
(a = getOff — 3bOn(b)) A
vbVd (a = goTo(b,d) — Route(b, d))

20/38

The Projection Problem

The central task in reasoning about actions:

Definition: projection problem

Given a basic action theory:
Is a goal formula true in a future situation?

oA Zdyn)= [tl] 500 [tj]oc

Want: a way to eliminate [t| operators.

21/38

The Projection Problem

The central task in reasoning about actions:

Definition: projection problem

Given a basic action theory:
Is a goal formula true in a future situation?

o A Zdyn)= [tl] R [tj]oc

Want: a way to eliminate [t| operators.

Two approaches:
B Regression: reduce to Ly = o*

W Progression: reduce to £ U Zgyn = &

21/38

Overview of the Lecture

B Three Problems

The Situation Calculus

B Projection by regression

Projection by progression
B Knowledge and sensing

B Concluding words

22/38

Regression - The Idea

W Successor state axioms relate truth after a to truth before a:
O [a]F () <> Y, where yr mentions no [t]

23/38

Regression - The Idea

W Successor state axioms relate truth after a to truth before a:
O [a]F () <> Y, where yr mentions no [t]

B Idea: successively replace [r]F(t) with yr s

23/38

Regression - The Idea

W Successor state axioms relate truth after a to truth before a:
O [a]F () <> Y, where yr mentions no [t]

B Idea: successively replace [r]F(t) with yr s

B Result: Zo U Zgyn = [t1] - . . [j] reduces to 2o U Zgyy = &*

23/38

Regression - The Idea

W Successor state axioms relate truth after a to truth before a:
O [a]F () <> Y, where yr mentions no [t]

B Idea: successively replace [r]F(t) with yr s
B Result: Zo U Zgyn = [t1] - . . [j] reduces to 2o U Zgyy = &*

B Good: very simple and quite elegant

23/38

Regression - The Idea

W Successor state axioms relate truth after a to truth before a:
O [a]F () <> Y, where yr mentions no [t]

Idea: successively replace [r]F(t) with yr o

B Result: Zo U Zgyn = [t1] - . . [j] reduces to 2o U Zgyy = &*

Good: very simple and quite elegant

B Bad: o* may grow exponentially

23/38

Regression

Definition: regression operator, objective part

Regression of « is defined w.r.t. a basic action theory where yr, vy
are the RHSs of the successor-state axioms and 7t is the RHS of the
Poss axiom. We assume no variable in o is quantified twice in the
same scope (asin 3x(x V 3xB)):

def

= Rl r,F©] £ Rlz,vr

B Rz r,f(f) = to] = Rz, vf f?ﬁé] if f is a function of sort object

24/38

Regression
Definition: regression operator, objective part

Regression of « is defined w.r.t. a basic action theory where yr, vy
are the RHSs of the successor-state axioms and 7t is the RHS of the
Poss axiom. We assume no variable in o is quantified twice in the
same scope (asin 3x(x V 3xB)):
] R[z T FO)E Rz e fF]
- axyy o . .
Riz-r f(_jdef to] £ Rz SYE Fto] if f is a function of sort object
RI(),F()] = F(€)
RO, f(£) =] d:eff(f‘) =to iff is afunction of sort object
[<> t1 = to] = t1 = tp ift:is nota function of sort object

24/38

Regression

Definition: regression operator, objective part

Regression of « is defined w.r.t. a basic action theory where yr, vy
are the RHSs of the successor-state axioms and 7t is the RHS of the
Poss axiom. We assume no variable in o is quantified twice in the
same scope (asin 3x(x V 3xB)):

Rlz-r FO) = Rlzve 1F]
Rlz-r,.f(t) = to] R[SYE ;ft};] if f is a function of sort object
(), F(D)] £ F(F)

Al
[<> (ﬂ)] dzeff(f‘) =tp iffisafunction of sort object
[<> t1 = to] = t1 = tp ift:is nota function of sort object

Rz, Poss(t)] £ Rz, Y

24/38

Regression

Definition: regression operator, objective part

Regression of « is defined w.r.t. a basic action theory where yr, vy
are the RHSs of the successor-state axioms and 7t is the RHS of the
Poss axiom. We assume no variable in o is quantified twice in the
same scope (asin 3x(x V 3xB)):

Rk~nH3PaRkaa]

Rlz-rf(t) =to] £ Rz SYE ;.?t};] if f is a function of sort object
RI(),F(6)] ZE()
RO, f(£) =] d:eff(f‘) =to iff is afunction of sort object
[<> 1= to] = t1 = tp ift:is nota function of sort object
Rz, Poss(t)] £ Rz, Y

(ocV B)] = (Rlz, od V R[z, B])

Rlz,
Rz, ~a] Z —Rz, o
Rz, Ix o] = xRz, o]

24/38

Regression

Definition: regression operator, objective part

Regression of « is defined w.r.t. a basic action theory where yr, vy
are the RHSs of the successor-state axioms and 7t is the RHS of the
Poss axiom. We assume no variable in o is quantified twice in the
same scope (asin 3x(x V 3xB)):

Rk~nH3PaRkaa]

Rlz-rf(t) =to] £ Rz SYE ?t};] if f is a function of sort object
RI(),F(6)] ZE()

RO, f(£) =] d:eff(f‘) =to iff is afunction of sort object
[<> t1 = to] = t1 = tp ift:is nota function of sort object

Rz, Poss(t)] £ Rz, Y

Rlz, (xV B)] = (Rlz, o] v R[z, B])

Rz, o] = —|R[z o]

Rz, 3] IRz, o

Rlz, [t] o] ER[z-t, o

The first parameter in R [z, o is the “situation stack”.

24 /38

The Regression Result

Theorem: regression

Let 29 A L4yn be a basic action theory over F.
Let o mention only fluents from F U {Poss} and no (J.
LoUZgyn F @ <= Zo = R[(), o

25/38

Example

Let 2o U gy be the bus scenario.
Lo U Zgyn = [getOn(M50)][goTo(M50, Uni)]pos = Uni ?

26/38

Example

Let 2o U gy be the bus scenario.
Lo U Zgyn = [getOn(M50)][goTo(M50, Uni)]pos = Uni ?
< Yo E R[(), [getOn(M50)][goTo(M50, Uni)|pos = Uni]

26/38

Example

Let 2o U gy be the bus scenario.

Lo U Zgyn = [getOn(M50)][goTo(M50, Uni)]pos = Uni ?
< o = R[(), [getOn(M50)][goTo(M50, Uni)|pos = Uni]
< Xy | R[getOn(M50) - goTo(M50, Uni), pos = Uni]

26/38

Example

O [a]pos = p «» 3b (a = goTo(b,p) A On(b)) Vv

(pos =p A =3d3b (a = goTo(b,d) A On(b)))

Let 2o U gy be the bus scenario.

Lo U Zgyn = [getOn(M50)][goTo(M50, Uni)]pos = Uni ?
< Yo E R[(), [getOn(M50)][goTo(M50, Uni)|pos = Uni]
< Xy | R[getOn(M50) - goTo(M50, Uni), pos = Uni]
“ Lo |= R[getOn(MS50), Ypos goroniso,uni)unil

26/38

Example O [a]pos = p «» 3b (a = goTo(b,p) A On(b)) Vv
(pos =p A =3d3b (a = goTo(b,d) A On(b)))

Let 2o U gy be the bus scenario.
Lo U Zgyn = [getOn(M50)][goTo(M50, Uni)]pos = Uni ?
< Yo E R[(), [getOn(M50)][goTo(M50, Uni)|pos = Uni]
< Xy | R[getOn(M50) - goTo(M50, Uni), pos = Uni]
= Lo = R[getOn(MS50), Ypos §1o(is0,0ni)Uni)
& o = 3b(goTo(M50, Uni) = goTo(b, Uni) A R[getOn(M50),0n(b)]) v ...

26/38

Examp|e O [a]On(b) <+ a = getOn(b) V (On(b) A a # getOff)

SO

Let 2o U gy be the bus scenario.
Lo U Zgyn = [getOn(M50)][goTo(M50, Uni)]pos = Uni ?
Lo E R[(), [getOn(M50)][goTo(M50, Uni)|pos = Uni]
o = R[getOn(M50) - goTo(M50, Uni), pos = Uni]
Zo [= R[getOn(M50), Ypos go1o(m50,Uni) Unil
Zo = 3b (goTo(M50, Uni) = goTo(b, Uni) A R[getOn(M50), On(b)]) V ..
Zo = 3b(goTo(M50, Uni) = goTo(b, Uni) A R[{), Yon Seonsort]) V -+

26/38

Examp|e O [a]On(b) <+ a = getOn(b) V (On(b) A a # getOff)

t ¢t ¢ ¢ ¢ Q

Let 2o U gy be the bus scenario.
Lo U Zgyn = [getOn(M50)][goTo(M50, Uni)]pos = Uni ?
Lo E R[(), [getOn(M50)][goTo(M50, Uni)|pos = Uni]
o = R[getOn(M50) - goTo(M50, Uni), pos = Uni]
Zo [= R[getOn(M50), Ypos go1o(m50,Uni) Unil
Zo = 3b (goTo(M50, Uni) = goTo(b, Uni) A R[getOn(M50),0n(b)]) v ...
Zo = 3b(goTo(M50, Uni) = goTo(b, Uni) A R[{), Yon Seionusort]) V - -

Zo = 3b (goTo(M50, Uni) = goTo(b, Uni) A
(getOn(M50) = getOn(b) V
(RL0. Onb)] A SecOn(MS0) % gec0f)) v

26/38

Example

t ¢t ¢ ¢ ¢ Q

i3

Let Lo U Lgyy be the bus scenario.
Lo U Zgyn = [getOn(M50)][goTo(M50, Uni)]pos = Uni ?
Lo E R[(), [getOn(M50)][goTo(M50, Uni)|pos = Uni]
o = R[getOn(M50) - goTo(M50, Uni), pos = Uni]
Zo [= R[getOn(M50), Ypos go1o(m50,Uni) Unil
Lo = 3b (goTo(M50, Uni) = goTo(b, Uni) A R[getOn(M50), On(b)]) V .
Zo = 3b (goTo(M50, Uni) = goTo(b, Uni) A R[{), Yon getOn(MSO)b]) V.

Zo = 3b (goTo(M50, Uni) = goTo(b, Uni) A
(getOn(M50) = getOn(b) V
(R[(), On(b)] A getOn(M50) # getOff))) v

o E=3b (M50=bA (M50=bVR[(),On()])) V...

Valid if b is M50. So the whole formula is valid and hence entailed by X
26/38

Overview of the Lecture

B Three Problems

The Situation Calculus

Projection by regression
B Projection by progression
B Knowledge and sensing

B Concluding words

271738

Progression - The Idea

B Want a new X after action t

28/38

Progression - The Idea

B Want a new X after action t

B |dea: use yr ‘rlg? to initialise new F(t), forget old F(f)

28/38

Progression - The Idea

B Want a new X after action t
. ax T
B |dea: use yr 7 to initialise new F(t), forget old F(f)

B Result: Zo U Zgyn = [t1] . .. [t reduces to Z§ U Zgyn = o

28/38

Progression - The Idea

B Want a new X after action t
. AX bm tins 1
B |dea: use yr 77 to initialise new F(t), forget old F(f)
B Result: Zo U Zgyn = [t1] . .. [t reduces to Z§ U Zgyn = o

B Progression is the dual to regression

28/38

Progression - The Idea

B Want a new X after action t

Idea: use yr 9% to initialise new F(t), forget old F(f)
B Result: Zo U Zgyn = [t1] . .. [t reduces to Z§ U Zgyn = o

B Progression is the dual to regression

Big problem: forgetting is very hard to formalise!

Requires second-order logic in general
Second-order logic features quantification over predicates/functions

28 /38

Progression - The Idea

B Want a new X after action t
® Idea: use yr ¥ to initialise new F(f), forget old F(f)
B Result: Zo U Zgyn = [t1] . .. [t reduces to Z§ U Zgyn = o
B Progression is the dual to regression
B Big problem: forgetting is very hard to formalise!
Requires second-order logic in general

Second-order logic features quantification over predicates/functions
Actions like goTo(b, d) cause the problem

» goTo(b,d) moves the passengers of the bus
> Indirect effects

28 /38

Progression - The Idea

B Want a new X after action t
. a f VPN
m Idea: use yr ?2 to initialise new F(f), forget old F(t)
B Result: Zo U Zgyn = [t1] . .. [t reduces to Z§ U Zgyn = o
B Progression is the dual to regression

B Big problem: forgetting is very hard to formalise!

Requires second-order logic in general
Second-order logic features quantification over predicates/functions
Actions like goTo(b, d) cause the problem

» goTo(b,d) moves the passengers of the bus
> Indirect effects

Expressible subclasses are known

28 /38

Overview of the Lecture

B Three Problems

The Situation Calculus

Projection by regression

Projection by progression
B Knowledge and sensing

B Concluding words

29/38

Knowledge and Sensing

B New formulas: Ka O«
B Predicate SF(t) represents sensing result of action t

30/38

Knowledge and Sensing

B New formulas: Ka O«
B Predicate SF(t) represents sensing result of action t

Ex.: You ask the driver whether the bus is going to UNSW

B “Yes" — you know the bus going to UNSW
B “No” = you know the bus is not going to UNSW

30/38

Knowledge and Sensing

B New formulas: Ka O«
B Predicate SF(t) represents sensing result of action t

Ex.: You ask the driver whether the bus is going to UNSW
B “Yes" — you know the bus going to UNSW
B “No” = you know the bus is not going to UNSW

Formalisation of knowledge and sensing:
B Set of possible worlds e

B Doing A tells you the value of SF(A) in real world w
B Only consider those w’ € e which agree with w
If w says bus goes to UNSW, only consider w’ where bus goes to UNSW

30/38

The Semantics of Knowledge and Sensing

Definition: semantics of knowledge and sensing

w~,w <= w,w agree on the sensing results:
mw = w’

B w~, w < w>~,w and w[SF(n),z] = w[SF(n),]

31/38

The Semantics of Knowledge and Sensing

Definition: semantics of knowledge and sensing

w~,w <= w,w agree on the sensing results:
mw = w’
B w~, w < w>~,w and w[SF(n),z] = w[SF(n),]

An epistemic state e is a set of worlds.

31/38

The Semantics of Knowledge and Sensing

Definition: semantics of knowledge and sensing

w~,w <= w,w agree on the sensing results:
/

mw >y w
B w~, w < w>~,w and w[SF(n),z] = w[SF(n),]
An epistemic state e is a set of worlds.

B Rules from Slide 14 retrofitted with additional e parameter,
e.g.,ew,zEx < ew,z £«

31/38

The Semantics of Knowledge and Sensing

Definition: semantics of knowledge and sensing

w~,w <= w,w agree on the sensing results:
mw =20y w’

B w~, w < w>~,w and w[SF(n),z] = w[SF(n),]
An epistemic state e is a set of worlds.

B Rules from Slide 14 retrofitted with additional e parameter,
e.g.,ew,zEx < ew,z £«

B e w,z EKax < forall worldsw/,
weeandw~w =ew 2z«

31/38

The Semantics of Knowledge and Sensing

Definition: semantics of knowledge and sensing

w~,w <= w,w agree on the sensing results:

mw =20y w’
B w~, w < w>~,w and w[SF(n),z] = w[SF(n),]
An epistemic state e is a set of worlds.

B Rules from Slide 14 retrofitted with additional e parameter,
e.g.,ew,zEx < ew,z £«

B e w,z EKax < forall worldsw/,
weeandw~w =ew 2z«

B e w,z=Ox < forall worldsw/,
weeandw = w Sew 2«

L E o < foralle,w,ife,w,() = B forall p € L, thene,w, () E «

31/38

Basic Action Theories with Knowledge

An action theory must describe
B what is true the initial situation
B what is known about the initial situation
B how fluents change = successor-state axioms
B the action preconditions = axiom for Poss(a)
B how sensing works = axiom for SF(a)

32/38

Basic Action Theories with Knowledge

An action theory must describe
B what is true the initial situation
B what is known about the initial situation
B how fluents change = successor-state axioms
B the action preconditions = axiom for Poss(a)
B how sensing works = axiom for SF(a)

Definition: basic action theory

Lo A Zgyn A O(Z1 A Zgyn) is a basic action theory over F iff
B X4y, contains a successor-state axiom for every fluent in 7
B X4y, contains an axiom [Poss(a) « 7
B X4, contains an axiom O SF(a) < ¢
B X, X1, 7, @ mention no Poss, SF, [T, [t].

32/38

Example: the Bus Scenario as Basic Action Theory

B What is true, what is known initially:
o &

def
I =

pos = Central A Route(M50, Uni)
pos = Central

33/38

Example: the Bus Scenario as Basic Action Theory

B What is true, what is known initially:
def

Yy = pos = Central A Route(M50, Uni)

¥ ¥ pos = Central
B [1[a]On(b) +» a = getOn(b) v (On(b) A a # getOff)

® O[a]pos =p <> 3b(a = goTo(b,p) A On(b)) V
(pos =p A =3d3b (a = goTo(b,d) A On(b)))

m OPoss(a) «» (3ba = getOn(b) — Vb—On(b)) A
(a = getOff — 3bOn(b)) A
VbVd (a = goTo(b,d) — Route(b, d))

33/38

Example: the Bus Scenario as Basic Action Theory

B What is true, what is known initially:
def

Yy = pos = Central A Route(M50, Uni)

¥ ¥ pos = Central
B [1[a]On(b) +» a = getOn(b) v (On(b) A a # getOff)

® O[a]pos =p <> 3b(a = goTo(b,p) A On(b)) V
(pos =p A =3d3b (a = goTo(b,d) A On(b)))

m OPoss(a) «» (3ba = getOn(b) — Vb—On(b)) A
(a = getOff — 3bOn(b)) A
VbVd (a = goTo(b,d) — Route(b, d))

B You can ask and learn whether the bus stops at a destination:
OSF(a) « VbVd (a = ask(b,d) — Route(b, d))

33/38

Regression of Knowledge

E [a]K« <> (SF(a) — K(SF(a) — [a]x)) A
(—SF(a) — K(—=SF(a) — [a]x))

Looks like a successor-state axiom, but it's a theorem!

34/38

Regression of Knowledge

Theorem: knowledge after action

E [a]Ka +» (SF(a) — K(SF(a) — [a]x)) A
(=SF(a) — K(—SF(a) — [a]«))

Looks like a successor-state axiom, but it's a theorem!

Definition: regression operator, subjective part

m R[(),Ko] Z KR[(), o]
m Rz -r,Ko] = Rz, (SF(r) — K(SE(r) — [rla))] A
Rz, (—SF(r) — K(=SF(r) — [r]«))]

def

B R[z,SF(t)] = Rz, ¢ ¢]

34/38

The Regression Result with Knowledge

Theorem: regression

Let Zo A Zgyn A O(Z1 A Zgyn) be a basic action theory over F.
Let o mention only fluents from F U {Poss, SF} and no O or [J.
DAY Zdyn ANO(Z1 A Zdyn) FEa < IyA0L; ER[),«

35/38

The Regression Result with Knowledge

Theorem: regression

Let Zo A Zgyn A O(Z1 A Zgyn) be a basic action theory over F.
Let o mention only fluents from F U {Poss, SF} and no O or [J.
DAY Zdyn ANO(Z1 A Zdyn) FEa < IyA0L; ER[),«

Reasoning about actions + knowledge

+

Regression (eliminates [t])

+

Representation theorem (eliminates K)

Non-modal reasoning!

35/38

Overview of the Lecture

B Three Problems

The Situation Calculus

Projection by regression
B Projection by progression
B Knowledge and sensing

B Concluding words

36/38

Relationship to Planning

B Modelling dynamic systems is core Al

B In the beginning (1950ies, 1960ies):
reasoning about action = planning

B McCarthy's situation calculus (1963, 1969):
too expressive, impractical

B Shakey introduced STRIPS for planning

B Reasoning about action and planning diverged

B Past years: they converge again
» Reasoning action gets more efficient
» Planning gets more expressive
» Both sides benefit

37/38

Relevant Questions?

Reasoning about Knowledge
B Why not classical logic?

Semantics of knowledge
B How is K defined?
B How is O« defined?
B How does quantification work?

Knowing that vs knowing what/who
B What's the difference?
B Why is that semantic difference?

Representation theorem
B What are known instances?
B How does RES do it?

Logical Omniscience
B What does it mean?

B Why is it a problem?

Limited belief |

Implementation

Reasoning about actions
B Why more worlds? B What are the problems?

i ?
B What is true/false support? Solution of frame problem
B When good/bad complexity?

m Why?

B What's a succ.-state axiom?
B What's a basic action theory?

Limited belief Il

Projection

'S uni ion?
® What's unit propagation? B What's the projection task?

B What's subsumption?
B How is Ky o defined?

B What are the approaches?

B How does regression work?
B Soundness vs completeness?
Semantics of actions

B How are worlds defined?
B What does SF(t) mean?
B How is Ko defined in sitcalc?

B How does DPLL work?
B |dea behind watched lits?
B |dea behind CDCL?

This list is not intended to be exhaustive.

38/38

