GSOE9210 Engineering Decisions

Problem Set BU

1. A casino has two tables, A and B , each with four aces, $\boldsymbol{\phi}, \boldsymbol{\uparrow}, \diamond, \diamond$, facing down.
On table A the ante (the amount it costs to play) is $\$ 100$. A player wins $\$ 170$ (the ante plus $\$ 70$) for choosing a red suit-hearts (()) or diamonds (\diamond)-and loses upon choosing a back suit
Table B also has four aces facing down, but its ante is $\$ 30$. This time the house (the casino) reveals the first card, after which the player has the option to fold (stop playing, losing the ante) or play-on to reveal another card for an additional raise of $\$ 60$. Continuing and subsequently revealing a red card wins $\$ 150$ (the combined ante plus $\$ 60$), otherwise the player loses the both the ante and raised amounts.
(a) Draw the lottery tree for the game at table A .
(b) What is the expected value of table A?
(c) A casino patron plays table B. The house reveals \&, and the player chooses to raise and play-on. Draw the resulting lottery tree ($\ell_{\boldsymbol{\omega}}$) for this stage of the game.
(d) What would be the probability of picking a black card if a black card was revealed by the house?
(e) What would be the probability of picking a red card if a black card was revealed by the house?
(f) What would be the expected value of raising and playing-on if a black card was revealed by the house?
(g) Given a choice between playing-on or folding above, which would be better?
(h) What would be the expected value of playing-on if a red card was revealed by the house?
(i) If a red card was revealed should you play-on or fold?
(j) What policy would you use if you played table B?
(k) What would be the expected value of table B before any cards are revealed?
(l) What would be the optimal policy upon entering the casino intending to play?
(m) If you had the choice not to play at all, would you play table B, table A, or neither?
(n) Write out the decision table corresponding to this decision problem.
