

COMP4418: Knowledge Representation and Reasoning

First-Order Logic 2

Maurice Pagnucco School of Computer Science and Engineering COMP4418. Week 2

First-Order Logic

Before building system

before there can be learning, reasoning, planning, explanation \dots need to be able to express knowledge

Want a precise declarative language

- declarative: believe P = hold P to be true
 cannot believe P without some sense of what it would mean for the world to satisfy P
- precise: need to know exactly
 - what strings of symbols count as sentences
 - what it means for a sentence to be true (but without having to specify which ones are true)

What does it mean to have a language?

- syntax
- semantics
- pragmatics

Here: language of first-order logic again: not the only choice

Semantics

How to interpret sentences?

- what do sentences claim about the world?
- what does believing one amount to?

Without answers, cannot use sentences to represent knowledge Problem:

cannot fully specify interpretation of sentences because non-logical symbols reach outside the language

So:

make clear dependence of interpretation on non-logical symbols

Logical interpretation:

specification of how to understand predicate and function symbols

Can be complex!

IsABetterJudgeOfCharacterThan, favouriteIceCreamFlavourOf, puddleOfWater27

Simple Case

There are objects

some satisfy predicate *P*; some do not

Each interpretation settles extension of P

borderline cases ruled in separate interpretations

Each interpretation assigns to function *f* a mapping from objects to objects functions always well-defined and single-valued

Main assumption:

- this is all you need to know about the non-logical symbols to understand which sentences of FOL are true or false
- In other words, given a specification of
 - what objects there are
 - which of them satisfy P
 - what mapping is denoted by f
- it will be possible to say which sentences of FOL are true and which are not

Interpretations

Two parts: $I = \langle D, \Phi \rangle$

D is the domain of discourse

- can be any set
- not just formal / mathematical objects
- e.g. people, tables, numbers, sentences, chunks of peanut butter, situations, the universe

Φ is an interpretation mapping

- If P is a predicate symbol of arity n, Φ(P) ⊆ [D × D × ... × D] an n-ary relation over D
 Can view interpretation of predicates in terms of characteristic function Φ(P) ∈ [D × D × ... × D → {0,1}]
- If f is a function symbol of arity n, $\Phi(f) \in [D \times D \times ... \times D \rightarrow D]$ an n-ary function over D
- For constants, $\Phi(c) \in D$

Denotation

In terms of interpretation I, terms will denote elements of D. will write element as I. For terms with variables, denotation depends on the values of variables will write as I, $\mu||t||$ where $\mu \in [\textit{Variables} \to D]$ called a variable assignment Rules of interpretation:

Satisfaction

In terms of I, wffs will be true for some values of the free variables and false for others

```
will write as I, \mu \models \alpha "\alpha is satisfied by I and \mu" where \mu \in [Variables \to D], as before or I \models \alpha, when \alpha is a sentence or I \models S, when S is a set of sentences (all sentences in S are true in I).
```

Rules of interpretation:

- 1. $I, \mu \models P(t_1, t_2, \dots, t_n)$ iff $\langle d_1, d_2, \dots, d_n \rangle$ where $R = \Phi(P)$ and $d_i = I, \mu ||t_i||$, as on previous slide
- 2. $I, \mu \models (t_1 = t_2)$ iff $I, \mu ||t_1||$ is the same as $I, \mu ||t_2||$
- 3. $I, \mu \models \neg \alpha \text{ iff } I, \mu \not\models \alpha$
- 4. $I, \mu \models (\alpha \land \beta)$ iff $I, \mu \models \alpha$ and $I, \mu \models \beta$
- 5. $I, \mu \models (\alpha \lor \beta)$ iff $I, \mu \models \alpha$ or $I, \mu \models \beta$
- 6. $I, \mu \models \exists v, \alpha \text{ iff for some } d \in D, I, \mu \{d; v\} \models \alpha$
- 7. $I, \mu \models \forall v, \alpha$ iff for all $d \in D$, $I, \mu\{d; v\} \models \alpha$ where $\mu\{d; v\}$ is just like μ , except on v, where $\mu(v) = d$.

For propositional subset: $I \models p \text{ iff } \Phi(p) = 1 \text{ and the rest as above}$

Logical Consequence

Semantic rules of interpretation tell us how to understand all wffs in terms of specification for non-logical symbols.

But some connections among sentences are independent of non-logical symbols involved. e.g. If α is true under I, then so is $\neg(\beta \land \neg \alpha)$ no matter what I is, why α is true, what β is,... a function of logical symbols only

S entails α or α is a logical consequence of *S*:

$$S \models \alpha$$
 iff for every I , if $I \models S$, then $I \models \alpha$

In other words: for no I, $I \models S \cup \{\neg \alpha\}$.

Say that $S \cup \{\neg \alpha\}$ is *unsatisfiable*

Special case: *S* is empty $\models \alpha$ iff for every *I*, $I \models \alpha$. Say α is *valid*.

Note: $\{\alpha_1, \alpha_2, \dots, \alpha_n\} \models \alpha \text{ iff } \models (\alpha_1 \land \alpha_2 \land \dots \land \alpha_n) \rightarrow \alpha$

finite entailment reduces to validity

Why do we care?

We do not have access to user-intended interpretation of non-logical symbols But, with *entailment*, we know that if S is true in the intended interpretation, then so is α .

- If the user's view has the world satisfying S, then it must also satisfy α
- There may be other sentences true also; but α is logically guaranteed.

```
So what about:
```

```
Dog(fido) \Rightarrow Mammal(fido)??

Not entailment!

There are logical interpretations where \Phi(Dog) \not\subset \Phi(Mammal)

Key idea of KR:

include such connections explicitly in S

\forall x[Dog(x) \rightarrow Mammal(x)]

Get: S \cup \{Dog(fido)\} \models Mammal(fido)

The rest is just the details...
```

Knowledge Bases

KB is set of sentences

explicit statement of sentences believed (including assumed connections among non-logical symbols)

$$\mathsf{KB} \models \alpha$$

- ullet α is a further consequence of what is believed
- explicit knowledge: KB
- implicit knowledge: $\{\alpha | KB \models \alpha\}$

Often non trivial: explicit → implicit

	A	green
	В	
ſ	С	non-green

Example:

Three blocks stacked.

Top one is green.

Bottom one is not green.

Is there a green block directly on top of a non-green block?

A Formalisation

```
S = \{On(a, b), On(b, c), Green(a), \neg Green(c)\}
   all that is required
\alpha = \exists x \exists y [Green(x) \land \neg Green(y) \land On(x, y)]
Claim: S \models \alpha
Proof:
Let I be any interpretation such that I \models S.
Case 1: I \models Green(b).
   \therefore I \models Green(b) \land \neg Green(c) \land On(b, c).
   \therefore I \models \alpha
Case 2: I \not\models Green(b).
   \therefore I \models \neg Green(b)
   \therefore I \models Green(a) \land \neg Green(b) \land On(a, b).
   \therefore I \models \alpha
Either way, for any I, if I \models S then I \models \alpha
So S \models \alpha. QED
```

Knowledge-Based System

Start with (large) KB representing what is explicitly known e.g. what the system has been told

Want to influence behaviour based on what is *implicit* in the KB (or as close as possible)

Requires reasoning

- deductive inference: process of calculating entailments of KB i.e given KB and any α , determine if KB $\models \alpha$.
- Process is *sound* if whenever it produces α then KB $\models \alpha$ does not allow for plausible assumptions that may be true in intended interpretation
- Process is *complete* if whenever KB $\models \alpha$, it produces α does not allow for process to miss some α or be unable to determine the status of α