COMP2121 Tutorial 1: Numbers and Arithmetic Revision

- 1. Convert the following numbers from the original base to the specified base:
 - a) 123_{10} \rightarrow _____2

 b) 10101_2 \rightarrow _____10

 c) 1084_{10} \rightarrow _____16

 d) $A5_{16}$ \rightarrow _____10

 e) 11001001_2 \rightarrow ______16
 - f) $2D5_{16} \rightarrow 2D5_{16}$
- 2. What is the result of the following calculations?
 - a) 1395 + 4988 (base 16)
 - b) 11001001 + 00101101 (base 2)
 - c) A41 560 (base 16)
 - d) 11001 011 (base 2)
- **4.** What number does 10010010 represent as an unsigned number? What does it represent in 2's complement notation?
- 5. In 2's complement addition, 11011011 + 01100000 = 00111011. Was there a 2's complement overflow? Why? What do the values in this sum represent?
- **6.** What is the difference between performing 2's complement addition and unsigned addition in the AVR processor?
- 7. Represent the following numbers in IEEE 754 32-bit floating point notation:
 - a) 1.5
 - b) 1084
 - c) -1
 - d) -13.75
- 8. What does the following IEEE 754 FP number represent:

0	1000 0001	110 0000 0000 0000 0000 0000
Sign	Exponent	Mantissa