
COMP4141
Theory of Computation

Lecture 1: Course Introduction

Outline

Administration

Introduction to COMP4141

Background concepts

Formal Languages

Tutorial problem

2

Acknowledgement of Country

I would like to acknowledge and pay my respect to the Bedegal
people who are the Traditional Custodians of the land on which
UNSW is built, and of Elders past and present.

3

COMP4141 23T1 Staff

Lecturer: Paul Hunter
Email: paul.hunter@unsw.edu.au
Lectures: Tuesdays 2pm-4pm and Wednesdays 2-4pm
Consults: Sundays 8-9pm
Research: Theoretical CS: Algorithms, Formal verification

Tutors: Ian Thorvaldson
Gerald Huang
Hira Saleem

4

Teaching arrangements

http://www.cse.unsw.edu.au/∼cs4141/

ed forum

No email? Join link

Lecture recordings

Tutorials (TBP)

Online consultation: (TBP), Sundays 8pm

email: paul.hunter@unsw.edu.au

Course textbook: Michael Sipser, Introduction to the Theory
of Computation

5

http://www.cse.unsw.edu.au/~cs4141/
https://edstem.org/au/courses/11192/discussion/
https://edstem.org/au/join/cP4amm
https://moodle.telt.unsw.edu.au/mod/lti/launch.php?id=5108862

Organisation

Classes

Lectures: slides + in-lecture notes

Tutorials: problem sets

Homework

Weekly Formatif Tasks

Ongoing assessment
Feedback-driven
User-set difficulty level

due Fridays

high-level discussions with others ok

Assessment

50% homework (Formatif)

50% exams:
a final take-home exam (date tba) (24 hours) worth 50%

6

Lateness policy

“Request an extension” in Formatif

First time will be automatically granted (but flagged)

Continual requests will trigger discussions with your tutor
and/or me

If you cannot meet a deadline through illness or misadventure
you need to apply for Special Consideration.

7

https://student.unsw.edu.au/special-consideration

Outline

Administration

Introduction to COMP4141

Background concepts

Formal Languages

Tutorial problem

8

Why do COMP4141?

Models of Computation

What is computation?

How can we model computation?

Why should we do so?

Computational Complexity

What sorts of things can (and cannot) be computed?

What happens when we limit resources (e.g. time or memory)?

How to win $1 million...

Set theory, developed as a foundation for all of mathematics,
provides a very useful formal framework in which to express the
answers to such questions.

9

Why do COMP4141?

Models of Computation

What is computation?

How can we model computation?

Why should we do so?

Computational Complexity

What sorts of things can (and cannot) be computed?

What happens when we limit resources (e.g. time or memory)?

How to win $1 million...

Set theory, developed as a foundation for all of mathematics,
provides a very useful formal framework in which to express the
answers to such questions.

9

Why do COMP4141?

Models of Computation

What is computation?

How can we model computation?

Why should we do so?

Computational Complexity

What sorts of things can (and cannot) be computed?

What happens when we limit resources (e.g. time or memory)?

How to win $1 million...

Set theory, developed as a foundation for all of mathematics,
provides a very useful formal framework in which to express the
answers to such questions.

9

Why do COMP4141?

Models of Computation

What is computation?

How can we model computation?

Why should we do so?

Computational Complexity

What sorts of things can (and cannot) be computed?

What happens when we limit resources (e.g. time or memory)?

How to win $1 million...

Set theory, developed as a foundation for all of mathematics,
provides a very useful formal framework in which to express the
answers to such questions.

9

Why do COMP4141?

Models of Computation

What is computation?

How can we model computation?

Why should we do so?

Computational Complexity

What sorts of things can (and cannot) be computed?

What happens when we limit resources (e.g. time or memory)?

How to win $1 million...

Set theory, developed as a foundation for all of mathematics,
provides a very useful formal framework in which to express the
answers to such questions.

9

Theory of
Computation

Automata

Formal
Verification

Compilers

Concurrency

Pushdown
Automata

Computational
Linguistics

Compilers

Databases

Turing
Machines

Lambda
Calculus

Quantum
Computer

Science

Philosophy

Complexity

Algorithms

P vs NP

Decidability

10

Value of the course

In 20 years, computers and programming will be vastly different.
But this material will be very much the same—and will still be
useful.
Provides insight into fundamental questions

defines the questions

answers some

many are open!

very close connection with logic, algorithms, linguistics, others.

Provides advanced problem-solving tools.

springboard for more advanced courses

research

applications

Practice with mathematics and proofs.

11

Course timeline (roughly)

Week 1 Introduction, Set Theory, Finite automata
Week 2 Regular languages
Week 3 Context-free languages and Pushdown automata
Week 4 Recursively enumerable languages and Turing Machines
Week 5 Decidability and reductions
Week 6 Flex week
Week 7 Time and space complexity, P and NP
Week 8 NP-completeness, SAT, PTIME reductions
Week 9 PSPACE, LogSPACE, Alternation
Week 10 Probabilistic computation, Approximation

12

Outline

Administration

Introduction to COMP4141

Background concepts

Formal Languages

Tutorial problem

13

Set Theory

union: S ∪ T

intersection: S ∩ T

empty set: ∅
set difference: S\T or S − T

complement: S

distributivity: S ∪ (T ∩ U) = (S ∪ T) ∩ (S ∪ U)
distributivity: S ∩ (T ∪ U) = (S ∩ T) ∪ (S ∩ U)

subset: S ⊆ T

element of: x ∈ S

comprehension: {x ∈ S | ϕ(x)} or {x ∈ S : ϕ(x)}
the set of elements of S satisfying ϕ

14

Representing Sets (discussion)

Suppose a programmer needs to represent a small, finite, set S .

What does “represent” mean?

Answer: You can answer questions about it.
Simple common question: Is x ∈ S?
Other questions: Is S = ∅? Is S ∩ T = ∅? Etc.

What representations would be appropriate?

Suppose you want to represent infinite sets. How do you do it?

Same question: What does “represent” mean?

Same answer: You can answer questions about it.
Same simple common question: Is x ∈ S?

What representations would be appropriate?

That’s what this part of the course is about.

15

Representing Sets (discussion)

Suppose a programmer needs to represent a small, finite, set S .

What does “represent” mean?
Answer: You can answer questions about it.
Simple common question: Is x ∈ S?
Other questions: Is S = ∅? Is S ∩ T = ∅? Etc.

What representations would be appropriate?

Suppose you want to represent infinite sets. How do you do it?

Same question: What does “represent” mean?

Same answer: You can answer questions about it.
Same simple common question: Is x ∈ S?

What representations would be appropriate?

That’s what this part of the course is about.

15

Representing Sets (discussion)

Suppose a programmer needs to represent a small, finite, set S .

What does “represent” mean?
Answer: You can answer questions about it.
Simple common question: Is x ∈ S?
Other questions: Is S = ∅? Is S ∩ T = ∅? Etc.

What representations would be appropriate?

Suppose you want to represent infinite sets. How do you do it?

Same question: What does “represent” mean?

Same answer: You can answer questions about it.
Same simple common question: Is x ∈ S?

What representations would be appropriate?

That’s what this part of the course is about.

15

Representing Sets (discussion)

Suppose a programmer needs to represent a small, finite, set S .

What does “represent” mean?
Answer: You can answer questions about it.
Simple common question: Is x ∈ S?
Other questions: Is S = ∅? Is S ∩ T = ∅? Etc.

What representations would be appropriate?

Suppose you want to represent infinite sets. How do you do it?

Same question: What does “represent” mean?
Same answer: You can answer questions about it.
Same simple common question: Is x ∈ S?

What representations would be appropriate?
That’s what this part of the course is about.

15

What is a representation?

Suppose you have devised a notation for sets, that is a
representation that can be stored in a computer.
Can all sets be represented?

This raises profound questions: Which sets can be represented on
a computer and which can’t?

16

What is a representation?

Suppose you have devised a notation for sets, that is a
representation that can be stored in a computer.
Can all sets be represented?

This raises profound questions: Which sets can be represented on
a computer and which can’t?

16

One view of formal language theory

Automata and complexity theory is concerned with properties of
formal languages.

In formal language, automata, and complexity theory, a language is
just a set of strings.

(Like many mathematical definitions, this leaves behind most of
what we think of as “languages,” but can be made precise. And it
leads to very profound results.)

Basically, any object or value that is of interest to computer
science can be represented as a string.

So a set of anything can be considered a language.

17

Questions from formal language theory

What (infinite) sets are representable?

What can a computer do with the representations, in theory?

What cannot be done with the representations, in theory?

What problems are easy, hard, or impossible to solve
computationally?

18

Another view of formal language theory

For practical purpose, a language is the same thing as a Boolean
function. Such a function is also called a property or a predicate.

For example, the predicate even(x), which returns “true” iff x is
(string representation of) an even number, can be considered to
represent the set of even numbers (think of it as an “implicit set
lookup”).

So, if we can answer questions about languages, we are also
answering questions about properties of objects.

19

Application: Computer languages

Basis for tools and programming techniques.

Lexical analysis

Parsing

Program analysis

Many interesting problems in programming language
implementations are hard or impossible to solve in general.
Examples:

Equivalence of grammars.

Almost any exact analysis.

20

Application: Formal Verification

Formal verification attempts to prove system designs (e.g.
programs) correct, or to find bugs.

Methods are generally from logic and automata theory. Many of
the constructions in this course are used in practical tools.

Automata constructs (e.g. product construction)

Reductions to SAT (an NP-completeness proof technique).

“Bounded model checking”—the idea is from Cook’s theorem

It is also important to know a little about complexity theory, since
many problems in this area are hard or impossible to solve, in
general.

21

Outline

Administration

Introduction to COMP4141

Background concepts

Formal Languages

Tutorial problem

22

Basic concept

Definition

An alphabet is a non-empty finite set. The members of the
alphabet are called symbols.

Examples

Binary alphabet {0, 1}

ASCII character set—the first 128 numbers, many of which are
printed as special characters. Also, any other finite character set.

The capital Greek sigma (Σ) is often used to represent an alphabet.

23

Strings

Informally: A string is a finite sequence of symbols from some
alphabet.

Examples

ε—the empty string (the same for every alphabet). (Leaving a
blank space for the empty string is confusing, so we use the
Greek letter “epsilon”). ε is not a symbol! It is the string with
no symbols; the string of zero length.

000, 01101 are strings over the binary alphabet

“String” is a string over the ASCII character set, or the
English alphabet.

24

Strings cont.

Definition (strings over alphabet Σ)

Base: ε is a string over Σ
Induction: If x is a string over Σ and a is a symbol from Σ, then
ax is a string over Σ.

(Think of ax as appending a symbol to the front of an existing
string.)

Notation: The set of all strings over an alphabet Σ is written Σ∗.

25

Length of a string

Many functions are defined recursively on the structure of strings,
and many proofs are done by induction on strings.

Informally: The length of a string is the number of occurrences of
symbols in the string (the number of different positions at which
symbols occur).

The length of string x is written |x |.

Definition (length)

Base: |ε| = 0

Induction: |ax | = 1 + |x |

26

Concatenation of strings

Informally: The concatenation of strings x and y over alphabet Σ
is the string formed by following x by y . It is written x · y , or
(more often) xy .

Examples

abc · def = abcdef

ε · abc = abc

Definition (concatenation)

The definition is recursive on the structure of the first string:
Base: ε · x = x if x is a string over Σ.
Induction: If x and y are strings over Σ and a ∈ Σ then

(ax) · y = a(x · y)

Note: The parentheses are not symbols, they are for grouping, so
(ax) · y is ax concatenated with y .

27

Proof by Induction

Show that for arbitrary strings x , y , z over Σ concatenation is
associative, i.e.,

x · (y · z) = (x · y) · z

28

Sidenote: Proof Expectations

We don’t want to lose sight of the forest because of the trees.
Here are the “forest-level” points with proofs.

What is the proof strategy?
Induction on strings. What are the base and induction steps?
Induction on expressions. What are the base and induction
steps?
Diagonalization
Reduction from another problem. Which direction is the
reduction?

What are the key insights in the proof?

Often this is a construction (often something that can be
implemented as a computer program)

Translation between regular expressions, various finite
automata.
Translation from one problem to another.

Explain these things clearly in your proofs. If we can see quickly
that you did the right kind of proof and got the major points right,
you may get nearly full marks.

29

Sidenote: Proof Guidelines

1 State what is being proved precisely and clearly.

2 Start proof with an explanation of the strategy (e.g.
“induction on y”)

3 Provide guideposts (e.g. Base, Induction)

4 Highlight the interesting key parts of the proof (where did you
have to be clever?)

5 Make it easy for the graders to see these things.

NB

Use Sipser’s proofs as blueprints. As beginners, you need to
provide more detail than he typically does. The license to be brief
has to be earned by repeatedly demonstrating the capability of
filling in all omitted detail. Do not omit detail your average
reader/fellow student cannot be expected to fill in.

30

Languages

Definition

A language over Σ is a subset of Σ∗.

NB

Of course, this omits almost everything that one intuitively thinks
is important about a language, such as meaning. But this definition
nevertheless leads to incredibly useful and important results.

31

Examples

∅ (the empty language)

{ε} (the language consisting of a single empty string).

The set of all strings with the same number of as as bs.

The set of all prime numbers, written as binary strings.

The set of all strings representing C programs that compile
without errors or warnings.

The set of all first-order logic formulas.

The set of all theorems of number theory, in an appropriate
logical notation.

The set of all input strings for which a given Boolean C
function returns “true.”

32

Outline

Administration

Introduction to COMP4141

Background concepts

Formal Languages

Tutorial problem

33

Maze navigation

Task: “Program” a robot to navigate a maze

Every “tick” the robot receives inputs from its sensors and can
send outputs to its peripherals.

Inputs Outputs
Obstacle in front Move forward 1 step
Moving forward Turn left 90◦

Turning Turn right 90◦

Write a program to drive the robot out of an (unknown) maze

34

	Administration
	Introduction to COMP4141
	Background concepts
	Formal Languages
	Tutorial problem

