
KR & R! © Brachman & Levesque 2005 Defaults

Strictness of FOL

To reason from P(a) to Q(a), need either
• facts about a itself
• universals, e.g. ∀x(P(x) ⊃ Q(x))

– something that applies to all instances
– all or nothing!

But most of what we learn about the world is
in terms of generics

• e.g., encyclopedia entries for ferris wheels, violins,
turtles, wildflowers

Properties are not strict for all instances,
because

• genetic / manufacturing varieties
– early ferris wheels

• borderline cases
– toy violins

• imagined cases
– flying turtles

• cases in exceptional circumstances
– dried wildflowers

• ...

KR & R! © Brachman & Levesque 2005 Defaults

Generics vs. Universals

4 !Violins have four strings
! !! vs.
5 !All violins have four strings
! !! vs.
? !All violins that are not E1 or E2 or ... have
!four strings

! (exceptions usually cannot be enumerated)
!

Similarly, for general properties of individuals
! !Alexander the great: ruthlessness
! !Ecuador: exports
! !pneumonia: treatment

! !!

Goal: be able to say a P is a Q in general,
but not necessarily

! reasonable to conclude Q(a) given P(a)
unless there is a good reason not to

!

Here: qualitative version (no numbers)
!

KR & R! © Brachman & Levesque 2005 Defaults

Varieties of defaults

General statements
• statistical: Most P's are Q's.

People living in Quebec speak French.
• normal:! All normal P's are Q's.

Polar bears are white.
• prototypical: The prototypical P is a Q.

Owls hunt at night.

Representational
• conversational: Unless I tell you otherwise, a P is a Q.

– default slot values in frames
– disjointness in IS-A hierarchy (sometimes)
– closed-world assumption (below)

Epistemic rationales
• familiarity: If a P was not a Q, you would know it.

– an older brother
– very unusual individual, situation or event

• group confidence: All known P's are Q's.
! NP-hard problems unsolvable in poly time.

Persistence rationale
• inertia: A P is a Q if it used to be a Q.

– colours of objects
– locations of parked cars (for a while!)

KR & R! © Brachman & Levesque 2005 Defaults

Closed-world assumption

Reiter's observation:
! There are usually many more -ve facts than +ve facts!

AirLine Example: flight guide provides
! DirectConnect(cleveland,toronto)
!DirectConnect(toronto,northBay)
DirectConnect(toronto,winnipeg) ...

! but not: ¬DirectConnect(cleveland,northBay)

Conversational default, called CWA:
! only +ve facts will be given, relative to some

vocabulary

But note: KB ⎥≠ -ve facts
! would have to answer: “I don't know”

Proposal: a new version of entailment
! KB ⎥=c α iff KB ∪ Negs ⎥= α

' 'where
! Negs = {¬p | p ground atomic and KB⎥≠ p}

! Note: relation to negation as failure

Gives: KB ⎥=c +ve facts and -ve facts

a common pattern:
KB ‘ = KB ∪ Δ

KR & R! © Brachman & Levesque 2005 Defaults

Properties of CWA
For every sentence α without quantifiers,
either KB ⎥=c α or KB ⎥=c ¬α (or both)
Why? Inductive argument:

• immediately true for atomic sentences
• push ¬ in, e.g. KB ⎥= ¬¬α iff KB ⎥= α
• KB ⎥= (α ∧ β) iff KB ⎥= α and KB ⎥= β

• Say KB ⎥≠c (α ∨ β).
Then KB ⎥≠c α and KB ⎥≠c β.
So by induction, KB ⎥=c ¬α and KB ⎥=c ¬β.
Thus, KB ⎥=c ¬(α ∨ β).

CWA is an assumption about complete
knowledge

! never any unknowns, relative to vocabulary

In general, a KB has incomplete knowledge,
! e.g., if KB = (p ∨ q), then KB ⎥= (p ∨ q), but

KB⎥≠ p, KB⎥≠ ¬p, KB⎥≠ q, and KB⎥≠ ¬q

But with CWA, always have:
! If KB ⎥=c (α ∨ β), then KB ⎥=c α or KB ⎥=c β

! similar argument to above

KR & R! © Brachman & Levesque 2005 Defaults

Query evaluation
With CWA can reduce queries (without
quantifiers) recursively to atomic case:

! !KB ⎥=c (α ∧ β) iff KB ⎥=c α and KB ⎥=c β

! !KB ⎥=c (α ∨ β) iff KB ⎥=c α or KB ⎥=c β

' 'KB ⎥=c ¬(α ∧ β) iff KB ⎥=c ¬α or KB ⎥=c ¬β

' 'KB ⎥=c ¬(α ∨ β) iff KB ⎥=c ¬α and KB ⎥=c ¬β

' 'KB ⎥=c ¬¬α iff KB ⎥=c α

! reduces to: KB ⎥=c λ, where λ is a literal

If KB ∪ Negs is consistent, get
! !KB ⎥=c ¬α iff KB ⎥≠c α

! reduces to: KB ⎥=c p, where p is atomic

If atomic wffs stored as a table, deciding
whether or not KB ⎥=c α is like DB-retrieval:

• reduce query to set of atomic queries
• solve atomic queries by table lookup

Different from ordinary logic reasoning
! e.g. no reasoning by cases

' see “vivid reasoning” (discussed later)

KR & R! © Brachman & Levesque 2005 Defaults

Consistency

If KB is set of atoms, then KB ∪ Negs is always
consistent
Also works if KB has conjunctions and if KB
has -ve disjunctions

! If KB contains (¬p ∨ ¬q). Add both ¬p, ¬q.

Problem when KB ⎥= (α ∨ β), but KB⎥≠ α and
KB⎥≠ β

' e.g. KB = (p ∨ q) Negs = {¬p, ¬q}

' 'so KB ∪ Negs is inconsistent
! !and for every α, KB ⎥=c α !

Solution: only apply CWA to atoms that are
“uncontroversial”

! One approach: GCWA
! Negs = {¬p | If KB ⎥= (p ∨ q1 ∨ ... ∨ qn)
!! ! ! then KB ⎥= (q1 ∨ ... ∨ qn)}

! When KB is consistent, get:
– KB ∪ Negs consistent
– everything derivable is also derivable by CWA

KR & R! © Brachman & Levesque 2005 Defaults

Quantifiers and Equality

So far, results do not extend to wffs with quantifiers
• can have KB ⎥≠c ∀x.α and KB ⎥≠c ¬∀x.α

• e.g. just because for every term t, we have
! ! KB ⎥=c ¬DirectConnect(myHome, t)
!does not mean that
!! KB ⎥=c ∀x[¬DirectConnect(myHome, x)]

But may want to treat KB as providing complete
information about what individuals exist

Define: KB ⎥=c2 α iff KB ∪ Negs ∪ Dc ∪ Un ⎥= α

! ! Negs is as before
! !Dc is domain closure: ∀x[x=c1 ∨ ... ∨ x=cn],

! !Un is unique names: (ci ≠ cj), for i ≠ j

! !! where the ci are all the constants
!! appearing in KB (assumed finite)

Get:! KB ⎥=c2 ∃x.α iff KB ⎥=c2 α[x/c],
' ' ' ' for some c appearing in the KB
! KB ⎥=c2 ∀x.α iff KB ⎥=c2 α[x/c],
' ' ' ' for all c appearing in the KB
! KB ⎥=c2 (c = d) iff c and d are the same constant

KR & R! © Brachman & Levesque 2005 Defaults

Non-monotonicity

Ordinary entailment is monotonic
! If KB ⎥= α, then KB*⎥= α, for any KB ⊆ KB*

But CWA entailment is not monotonic
! Can have KB ⎥=c α, KB ⊆ KB', but KB' ⎥≠c α

! e.g.!{p} ⎥=c ¬q, but {p, q} ⎥≠c ¬q
!

Suggests study of non-monotonic reasoning
• start with explicit beliefs
• generate implicit beliefs non-monotonically,

taking defaults into account
! e.g. Birds fly.

• implicit beliefs may not be uniquely determined
! vs. monotonic case: {α | KB |= α}

!

Will consider three approaches:
• circumscription

! interpretations that minimize abnormality

• default logic
! KB as facts + default rules of inference

• autoepistemic logic
! facts that refer to what is/is not believed

KR & R! © Brachman & Levesque 2005 Defaults

Minimizing abnormality

Idea:
! CWA makes the extension of all predicates as small

as possible
! by adding negated literals

! Generalize: make extension of selected predicates
as small as possible

! Ab predicates used to talk about defaults

Example:
! ∀x[Bird(x) ∧ ¬Ab(x) ⊃ Fly(x)]

! All birds that are normal fly

! Bird(chilly), ¬Fly(chilly), Bird(tweety), (chilly ≠ tweety)

Would like Fly(tweety), but KB |≠ Fly(tweety)
! because there is an interp I where
!Φ(tweety) ∈ Φ(Ab)

Solution: consider only interps where Φ(Ab)
is as small as possible, relative to KB

! for example: need Φ(chilly) ∈ Φ(Ab)

Generalizes to many Abi predicates

KR & R! © Brachman & Levesque 2005 Defaults

Minimal Entailment
Given two interps over the same domain, I1 and I2

! I1 ≤ I2 iff Φ1(Ab) ⊆ Φ2(Ab)'
! for every Ab predicate

! I1 < I2 iff I1 ≤ I2 but not I2 ≤ I1
! !read: I1 is more normal than I2

Define a new version of entailment, |=m, by

! KB |=m α iff for every I,
! !if I |= KB and no I*< I s.t. I* |= KB
! then I |= α.

' So only requiring α to be true in interpretations
satisfying KB that are minimal in abnormalities

Get: KB |=m Fly(tweety)

! because if interp satisfies KB and is minimal,
only Φ(chilly) will be in Φ(Ab).

Minimization need not produce a unique interpretation:
! Bird(a), Bird(b), [¬Fly(a) ∨ ¬Fly(b)]

! !Two minimal interpretations

! KB |≠m Fly(a), KB |≠m Fly(b), KB |=m [Fly(a) ∨ Fly(b)]
! !Different from the CWA: no inconsistency!

KR & R! © Brachman & Levesque 2005 Defaults

Circumscription

Can achieve similar effects by leaving entailment
alone, but adding a set of sentences to the KB

! like CWA, but not as simple as adding ¬Ab(t) since we
need not have constant names for abnormal individuals

Idea: say Ab, Bird, and Fly are the predicates,
and suppose there are wffs α(x), β1(x), and β2(x)
such that

! !KB[Ab/α; Bird/β1; Fly/β2] is true
and ∀x[α(x) ⊃ Ab(x)] is true

then want to conclude by default that
' '' ∀x[α(x) ≡ Ab(x)] is true.

! !will ensure that Ab is as small as possible

In general:
! where Abi are the abnormality predicates
! and! Pi are all the other predicates,

 Circ(KB) is the set of all wffs of the form
! KB[Ab1/α1; ... ; Abn/αn; P1/β1; ... ; Pm/βm]
' ∧ ∀x[α1(x) ⊃ Ab1(x)] ∧ ... ∧ ∀x[αn(x) ⊃ Abn(x)]
! ⊃ ∀x[α1(x) ≡ Ab1(x)] ∧ ... ∧ ∀x[αn(x) ≡ Abn(x)]] ...

KR & R! © Brachman & Levesque 2005 Defaults

Circumscription - 2
Theorem: If KB ∪ Circ(KB) |= α then KB |=m α

So this gives us a sound but incomplete method of
determining minimal entailments

! to get a complete version, would have to use “second
order logic,” which quantifies over predicates
! as in: ∀φ[KB[Ab/φ ...] ∧ ∀x(φ(x) ⊃ Ab(x)) ...

Use: guess at a “minimal” αi and appropriate other βi
such that KB |= KB[Ab/...] ∧ ∀x[αi(x) ⊃ Abi(x)], then:

• KB[Ab/...] ∧ ∀x[αi(x) ⊃ Abi(x)] ⊃ ∀x[αi(x) ≡ Abi(x)]
is a member of Circ(KB)

• so KB ∪ Circ(KB) |= ∀x[αi(x) ≡ Abi(x)]

• since αi was chosen to be some minimal set of
abnormal individuals, it follows from KB ∪ Circ(KB)
that these are the only instances of Abi

• so any other individual will have the properties of
normal individuals

For the bird example, a minimal α is (x = chilly), for
which a suitable β1 is Bird(x) and β2 is (x ≠ chilly).

! KB ∪ Circ(KB) |= ∀x[(x = chilly) ≡ Ab(x)]

! KB ∪ Circ(KB) |= ¬Ab(tweety)

KR & R! © Brachman & Levesque 2005 Defaults

Fixed / variable predicates
Imagine KB as before +

' ∀x[Penguin(x) ⊃ Bird(x) ∧ ¬Fly(x)]
! Get: KB |= ∀x[Penguin(x) ⊃ Ab(x)]

! so minimizing Ab also minimizes penguins!
! Get: KB |=m ∀x¬Penguin(x)

McCarthy's definition:
! Let P and Q be sets of predicates

! I1 ≤ I2 iff same domain and
' 1.' Φ1(P) ⊆ Φ2(P), for every P∈P! Ab predicates

' 2.' Φ1(Q) = Φ2(Q), for every Q∉Q

! so only predicates in Q are allowed to vary

Get definition of |=m that is parameterized by what is
minimized and what is allowed to vary

need a different definition of Circ(KB) too

In previous examples, want to minimize Ab while
allowing only Fly to vary (so keep Penguin fixed)

Problems:
• need to decide what to allow to vary
• cannot conclude ¬Penguin(tweety) by default!

only get default (¬Penguin(tweety) ⊃ Fly(tweety))

KR & R! © Brachman & Levesque 2005 Defaults

Default logic

Beliefs as deductive theory
! explicit beliefs = axioms
! implicit beliefs = theorems

! least set closed under inference rules
! e.g. If can prove α, (α ⊃ β), then infer β

Would like to generalize to default rules:
! If can prove Bird(x), but cannot prove ¬Fly(x), !

then infer Fly(x).

Problem: how to characterize theorems
! cannot write down a derivation as before, since we

will not know when to apply default rules
! no guarantee of unique set of theorems
! !If cannot infer p, infer q
!If cannot infer q, infer p ??

Solution: default logic
! no notion of theorem
! instead: have extensions

! sets of sentences that are “reasonable” beliefs,
given facts and default rules

KR & R! © Brachman & Levesque 2005 Defaults

Extensions
Default logic uses two components: KB = ‹F,D›

• F is a set of sentences (facts)
• D is a set of default rules: triples ‹α, β, γ› read as

! !If you can infer α and β is consistent,
!then infer γ

' α: the prerequisite
' β: the justification
' γ: the conclusion

! !example: ‹Bird(tweety), Fly(tweety), Fly(tweety)›
! treat ‹Bird(x), Fly(x), Fly(x)› as set of rules

! Default rules where β=γ are called normal
! !write as ‹α ⇒ β›

! will see later a reason for wanting non-normal ones

A set of sentences E is an extension of ‹F,D›
iff for every sentence π, E satisfies

' π ∈ E iff F ∪ Δ |= π
! where Δ = {γ | ‹α, β, γ› ∈ D, α ∈ E, ¬β ∉ E}

So, an extension E is the set of entailments of
F ∪ {γ}, where the γ are assumptions from D.

! to check if E is an extension, guess at Δ and
show that it satisfies the above constraint

KR & R! © Brachman & Levesque 2005 Defaults

Example
Suppose KB has

! F = Bird(chilly), ¬Fly(chilly), Bird(tweety)
D = ‹Bird(x) ⇒ Fly(x)›

then there is a unique extension:
' Δ = Fly(tweety)

• Resulting E is an extension since tweety is the only t for
this Δ such that Bird(t) ∈ E and ¬Fly(t) ∉ E.

• No other extension, since the same applies no matter
what Fly(t) assumptions are in Δ.

But in general can have multiple extensions:
! F = {Republican(dick), Quaker(dick)}

D = { ‹Republican(x) ⇒ ¬Pacifist(x)›,
!! ‹Quaker(x) ⇒ Pacifist(x)› }

Have two extensions:
! E1 has Δ = ¬Pacifist(dick)

E2 has Δ = Pacifist(dick)

Which to believe?
! credulous: choose an extension arbitrarily
! skeptical: believe what is common to all extensions

Can sometimes use non-normal defaults to avoid
conflicts in defaults

! ‹Quaker(x), Pacifist(x) ∧¬Republican(x), Pacifist(x)›
! but need to consider all possible interactions in defaults!

conflicting
defaults

KR & R! © Brachman & Levesque 2005 Defaults

Unsupported conclusions
Definition of extension tries to eliminate facts that
do not result from either F or D.

! for example, we do not want Yellow(tweety) and its
entailments in the extension

! no unsupported conclusions

But the definition has a problem:
! Suppose F = {} and D = ‹p, True, p›.
! Then E = entailments of {p} is an extension

! since p ∈ E and ¬True ∉ E, for above default

! However, no good reason to believe p!
! only support for p is default rule, which requires

p itself as a prerequisite
! so default rule should have no effect

! !Want unique extension: E = entailments of {}

Reiter's definition:
! For any set S, let Γ(S) be the least set containing F,

closed under entailment, and satisfying
! if ‹α, β, γ› ∈ D, α ∈ Γ(S), and ¬β ∉ S,
!then γ ∈ Γ(S).

! A set E is an extension of ‹F, D› iff E = Γ(E).
! called a fixed point of the Γ operator

note: not Γ(S)

KR & R! © Brachman & Levesque 2005 Defaults

Autoepistemic logic

One disadvantage of default logic is that
rules cannot be combined or reasoned about

! ‹α, β, γ› ß ‹α, β, (γ ∨ δ)›

Solution: express defaults as sentences in
extended language that talks about belief

! for any sentence α, have another sentence Bα
! Bα says "I believe α": autoepistemic logic

! e.g. ∀x[Bird(x) ∧ ¬B¬Fly(x) ⊃ Fly(x)]!
! any bird not believed to be flightless flies

These are not sentences of FOL, so what
semantics and entailment?

! modal logic of belief provide semantics
! for here: treat Bα as if it were an new atomic wff
! still get: ∀x[Bird(x) ∧ ¬B¬Fly(x) ⊃ Fly(x) ∨ Run(x)]

Main property for set of implicit beliefs, E:
! 1.! If E |= α then α ∈ E.! ! (entailment)!
! 2.! If α ∈ E then Bα ∈ E.! ! (positive introspection)

! 3.! If α ∉ E then ¬Bα ∈ E.!(negative introspection)

! Any such set of sentences is called stable

?

KR & R! © Brachman & Levesque 2005 Defaults

Stable expansions
Given KB, possibly containing B operators,
what is an appropriate stable set of beliefs?

! want a stable set that is minimal

Moore's definition: A set of sentences E is
called a stable expansion of KB iff it satisfies

! π ∈ E iff KB ∪ Δ |= π,

' 'where Δ = {Bα | α ∈ E} ∪ {¬Bα | α ∉ E}
' '' fixed point of another operator

! analogous to the extensions of default logic

Example:
! for KB = {Bird(chilly), ¬Fly(chilly), Bird(tweety),
!! ∀x[Bird(x) ∧ ¬B¬Fly(x) ⊃ Fly(x)]}

' get a unique stable expansion containing Fly(tweety)

As in default logic, stable expansions are not
uniquely determined

! KB = {(¬Bp ⊃ q), (¬Bq ⊃ p)}

' 2 stable expansions: one with p, one with q
! KB = {(¬Bp ⊃ p)}' ' ' ' (self-defeating default)

' no stable expansions – so what to believe?

KR & R! © Brachman & Levesque 2005 Defaults

Enumerating stable
expansions

Define: A wff is objective if it has no B operators

When a KB is propositional, and B operators only
dominate objective wffs, then we can enumerate all
stable expansions using the following:

1.!Suppose Bα1, Bα2, ... Bαn are all the B wffs in KB.
2.!Replace some of these by True and the rest by ¬True

in KB and simplify. Call the result KB° (it’s objective).
! at most 2npossible replacements

3.!Check that for each αi,
– if Bαi was replaced by True, then KB° |= αi

– if Bαi was replaced by ¬True, then KB° |≠ αi

4.!If yes, then KB° determines a stable expansion.
! entailments of KB° are the objective part

Example:
! For KB = {Bird(chilly), ¬Fly(chilly), Bird(tweety),
![Bird(tweety) ∧ ¬B¬Fly(tweety) ⊃ Fly(tweety)],
![Bird(chilly) ∧ ¬B¬Fly(chilly) ⊃ Fly(chilly)]}

' Two B wffs: B¬Fly(tweety) and B¬Fly(chilly),
!so four replacements to try

! Only one works: !B¬Fly(tweety) → ¬True,
!! ! ! B¬Fly(chilly) → True

! Resulting KB° has (Bird(tweety) ⊃ Fly(tweety))

KR & R! © Brachman & Levesque 2005 Defaults

More ungroundedness

Definition of stable expansion may not be
strong enough

! KB = {(Bp ⊃ p)} has 2 stable expansions:
– one without p and with ¬Bp

! corresponds to KB° = {}

– one with p and Bp.
! corresponds to KB° = {p}

! But why should p be believed?
! only justification for having p is having Bp!

! !similar to problem with default logic extension

Konolige's definition:
! A grounded stable expansion is a stable expansion

that is minimal wrt to the set of sentences without B
operators.
! rules out second stable expansion

Other examples suggest that an even
stronger definition is required!

! can get an exact equivalence with Reiter's definition
of extension in default logic

