Strictness of FOL

To reason from $P(a)$ to $Q(a)$, need either

- facts about a itself
- universals, e.g. $\forall x(P(x) \supset Q(x))$
- something that applies to all instances
- all or nothing!

But most of what we learn about the world is in terms of generics

- e.g., encyclopedia entries for ferris wheels, violins, turtles, wildflowers

Properties are not strict for all instances, because

- genetic / manufacturing varieties
- early ferris wheels
- borderline cases
- toy violins
- imagined cases
- flying turtles
- cases in exceptional circumstances
- dried wildflowers

KR \& R © Brachman \& Levesque 2005

Generics vs. Universals

4 Violins have four strings
vs.
5 All violins have four strings
vs.
? All violins that are not E_{1} or E_{2} or ... have four strings
(exceptions usually cannot be enumerated)

Similarly, for general properties of individuals
Alexander the great: ruthlessness
Ecuador: exports
pneumonia: treatment

Goal: be able to say a P is a Q in general, but not necessarily
reasonable to conclude $Q(a)$ given $P(a)$ unless there is a good reason not to

Here: qualitative version (no numbers)

Varieties of defaults

General statements

- statistical: Most P 's are Q 's.

People living in Quebec speak French.

- normal: All normal P 's are Q 's.

Polar bears are white.

- prototypical: The prototypical P is a Q.

Owls hunt at night.
Representational

- conversational: Unless I tell you otherwise, a P is a Q.
- default slot values in frames
- disjointness in IS-A hierarchy (sometimes)
- closed-world assumption (below)

Epistemic rationales

- familiarity: If a P was not a Q, you would know it.
- an older brother
- very unusual individual, situation or event
- group confidence: All known P 's are Q 's.

NP-hard problems unsolvable in poly time.

Persistence rationale

- inertia: A P is a Q if it used to be a Q.
- colours of objects
- locations of parked cars (for a while!)

Closed-world assumption

Reiter's observation:
There are usually many more -ve facts than +ve facts!

AirLine Example: flight guide provides

DirectConnect(cleveland,toronto)
DirectConnect(toronto,northBay)
DirectConnect(toronto,winnipeg)
but not: \neg DirectConnect(cleveland,northBay)

Conversational default, called CWA:

only +ve facts will be given, relative to some vocabulary

But note: KB $\mid \neq$-ve facts

would have to answer: "I don't know"

Proposal: a new version of entailment

KB $\mid={ }_{c} \alpha$ iff $\mathrm{KB} \cup$ Negs $\mid=\alpha$ where
Negs $=\{\neg p \mid p$ ground atomic and $\mathrm{KB} \mid \neq p\}$
Note: relation to negation as failure
Gives: KB $\left.\right|_{c}+$ ve facts and -ve facts

Properties of CWA

For every sentence α without quantifiers, either KB $={ }_{c} \alpha$ or KB $\mid={ }_{c} \neg \alpha$ (or both)

Why? Inductive argument:

- immediately true for atomic sentences
- push \neg in, e.g. KB $=\neg \neg \alpha$ iff $\mathrm{KB} \mid=\alpha$
- $\mathrm{KB} \mid=(\alpha \wedge \beta)$ iff $\mathrm{KB} \mid=\alpha$ and $\mathrm{KB} \mid=\beta$
- Say KB $\not \neq c_{c}(\alpha \vee \beta)$.

Then KB ${\mid{ }_{c}} \alpha$ and $\mathrm{KB} \mid \not{ }_{c} \beta$.
So by induction, $\mathrm{KB} \mid=_{c} \neg \alpha$ and $\mathrm{KB} \mid={ }_{c} \neg \beta$. Thus, $\mathrm{KB} \mid=_{c} \neg(\alpha \vee \beta)$.

CWA is an assumption about complete

 knowledgenever any unknowns, relative to vocabulary
In general, a KB has incomplete knowledge,
e.g., if $\mathrm{KB}=(p \vee q)$, then $\mathrm{KB}=(p \vee q)$, but $\mathrm{KB}|\neq p, \quad \mathrm{~KB}| \neq \neg p, \mathrm{~KB} \mid \neq q$, and $\mathrm{KB} \mid \neq \neg q$

But with CWA, always have:
If $\mathrm{KB} \mid=_{c}(\alpha \vee \beta)$, then $\mathrm{KB} \mid={ }_{c} \alpha$ or $\mathrm{KB} \mid={ }_{c} \beta$
similar argument to above

Query evaluation

With CWA can reduce queries (without quantifiers) recursively to atomic case:
$\mathrm{KB} \mid={ }_{c}(\alpha \wedge \beta)$ iff $\mathrm{KB} \mid={ }_{c} \alpha$ and $\mathrm{KB} \mid==_{c} \beta$
$\mathrm{KB} \mid==_{c}(\alpha \vee \beta)$ iff $\mathrm{KB} \mid={ }_{c} \alpha$ or $\mathrm{KB} \mid={ }_{c} \beta$
KB $\mid={ }_{c} \neg(\alpha \wedge \beta)$ iff KB $\mid=_{c} \neg \alpha$ or KB $\mid==_{c} \neg \beta$
$\mathrm{KB} \mid=_{c} \neg(\alpha \vee \beta)$ iff $\mathrm{KB} \mid=_{c} \neg \alpha$ and $\mathrm{KB} \mid=_{c} \neg \beta$
KB $\mid={ }_{c} \neg \neg \alpha$ iff KB $\mid={ }_{c} \alpha$
reduces to: $\mathrm{KB} \mid={ }_{c} \lambda$, where λ is a literal
If $\mathrm{KB} \cup N e g s$ is consistent, get
KB $\mid={ }_{c} \neg \alpha$ iff KB $\mid \nmid_{c} \alpha$
reduces to: $\mathrm{KB} \mid{ }_{=} p$, where p is atomic
If atomic wffs stored as a table, deciding whether or not $\mathrm{KB}={ }_{c} \alpha$ is like DB-retrieval:

- reduce query to set of atomic queries
- solve atomic queries by table lookup

Different from ordinary logic reasoning

e.g. no reasoning by cases

Consistency

If KB is set of atoms, then $\mathrm{KB} \cup N e g s$ is always consistent

Also works if KB has conjunctions and if KB has -ve disjunctions

If KB contains $(\neg p \vee \neg q)$. Add both $\neg p, \neg q$.
Problem when $\mathrm{KB} \mid=(\alpha \vee \beta)$, but $\mathrm{KB} \mid \neq \alpha$ and $\mathrm{KB} \mid \neq \beta$
e.g. $\mathrm{KB}=(p \vee q)$ Negs $=\{\neg p, \neg q\}$
so $\mathrm{KB} \cup N e g s$ is inconsistent
and for every $\alpha, \mathrm{KB} \mid={ }_{c} \alpha$!

Solution: only apply CWA to atoms that are "uncontroversial"

One approach: GCWA

$$
\begin{aligned}
\text { Negs }=\{\neg p & \text { I If KB } \mid=\left(p \vee q_{1} \vee \ldots \vee q_{n}\right) \\
& \text { then KB } \left.\mid=\left(q_{1} \vee \ldots \vee q_{n}\right)\right\}
\end{aligned}
$$

When KB is consistent, get:

- KB $\cup N e g s$ consistent
- everything derivable is also derivable by CWA

Quantifiers and Equality

So far, results do not extend to wffs with quantifiers

- can have KB $\mid F_{c} \forall x . \alpha$ and KB $\mid F_{c} \neg \forall x . \alpha$
- e.g. just because for every term t, we have KB $=_{c} \neg$ DirectConnect(myHome, t)
does not mean that
KB $\mid={ }_{c} \forall x[\neg$ DirectConnect(myHome, $\left.x)\right]$
But may want to treat KB as providing complete information about what individuals exist

Define: KB $\mid={ }_{c 2} \alpha$ iff $\mathrm{KB} \cup N e g s \cup D c \cup U n \mid=\alpha$
Negs is as before
$D c$ is domain closure: $\forall x\left[x=c_{1} \vee \ldots \vee x=c_{n}\right]$,
$U n$ is unique names: $\left(c_{i} \neq c_{j}\right)$, for $i \neq j$
where the c_{i} are all the constants appearing in KB (assumed finite)

Get: KB $\left.\right|_{c 2} \exists x . \alpha$ iff $\mathrm{KB} \mid=_{c 2} \alpha[x / c]$,
for some c appearing in the KB
$\mathrm{KB} \mid=_{c 2} \forall x . \alpha$ iff $\mathrm{KB} \mid={ }_{c 2} \alpha[x / c]$,
for all c appearing in the KB
$\mathrm{KB} \mid=_{c 2}(c=d)$ iff c and d are the same constant

Non-monotonicity
Ordinary entailment is monotonic If $K B \mid=\alpha$, then $K B^{*} \mid=\alpha$, for any $K B \subseteq K B^{*}$
But CWA entailment is not monotonic $\begin{gathered} \text { Can have KB }\left\|\left.\right\|_{c} \alpha, \mathrm{~KB} \subseteq \mathrm{~KB}^{\prime} \text {, but } \mathrm{KB}^{\prime}\right\| \not{ }_{c} \alpha \\ \text { e.g. }\{p\}\left\|\left.\right\|_{c} \neg q, \text { but }\{p, q\}\right\| \not \vDash_{c} \neg q \end{gathered}$
Suggests study of non-monotonic reasoning - start with explicit beliefs - generate implicit beliefs non-monotonically, taking defaults into account e.g. Birds fly. - implicit beliefs may not be uniquely determined vs. monotonic case: $\{\alpha\|\mathrm{KB}\|=\alpha\}$
Will consider three approaches: - circumscription interpretations that minimize abnormality - default logic KB as facts + default rules of inference - autoepistemic logic facts that refer to what is/is not believed
KR \& R © Brachman \& Levesque 2005 Defauls

Minimizing abnormality

Idea:

CWA makes the extension of all predicates as small as possible
by adding negated literals
Generalize: make extension of selected predicates as small as possible

Ab predicates used to talk about defaults

Example:

$\forall x[\operatorname{Bird}(x) \wedge \neg \operatorname{Ab}(x) \supset \mathrm{Fly}(x)]$
All birds that are normal fly
Bird(chilly), \neg Fly(chilly), Bird(tweety), (chilly \neq tweety)
Would like Fly(tweety), but KB $\mid \neq$ Fly(tweety)
because there is an interp I where $\Phi($ tweety $) \in \Phi(\mathrm{Ab})$

Solution: consider only interps where $\Phi(\mathrm{Ab})$ is as small as possible, relative to KB
for example: need Φ (chilly) $\in \Phi(\mathrm{Ab})$

Generalizes to many Ab_{i} predicates

Minimal Entailment

Given two interps over the same domain, \boldsymbol{I}_{1} and \boldsymbol{I}_{2}
$I_{1} \leq I_{2}$ iff $\Phi_{1}(\mathrm{Ab}) \subseteq \Phi_{2}(\mathrm{Ab})$
for every Ab predicate
$\boldsymbol{I}_{1}<\boldsymbol{I}_{2}$ iff $\boldsymbol{I}_{1} \leq \boldsymbol{I}_{2}$ but not $\boldsymbol{I}_{2} \leq \boldsymbol{I}_{1}$
read: \boldsymbol{I}_{1} is more normal than \boldsymbol{I}_{2}
Define a new version of entailment, $\mid={ }_{m}$, by
$\mathrm{KB} \mid={ }_{m} \alpha$ iff for every \boldsymbol{I},
if $\boldsymbol{I} \mid=\mathrm{KB}$ and no $\boldsymbol{I}^{\star}<\boldsymbol{I}$ s.t. $\boldsymbol{I}^{\star} \mid=\mathrm{KB}$ then $I \mid=\alpha$.

So only requiring α to be true in interpretations satisfying KB that are minimal in abnormalities

Get: $\mathrm{KB} \mid={ }_{m}$ Fly(tweety)
because if interp satisfies KB and is minimal, only Φ (chilly) will be in $\Phi(\mathrm{Ab})$.

Minimization need not produce a unique interpretation:
$\operatorname{Bird}(\mathrm{a}), \operatorname{Bird}(\mathrm{b}),[\neg \mathrm{Fly}(\mathrm{a}) \vee \neg \mathrm{Fly}(\mathrm{b})]$
Two minimal interpretations
$\mathrm{KB}\left|\not{ }_{m} \mathrm{Fly}(\mathrm{a}), \mathrm{KB}\right| \not{ }_{m} \mathrm{Fly}(\mathrm{b}), \mathrm{KB} \mid=_{m}[\mathrm{Fly}(\mathrm{a}) \vee \mathrm{Fly}(\mathrm{b})]$
Different from the CWA: no inconsistency!

Circumscription

Can achieve similar effects by leaving entailment alone, but adding a set of sentences to the KB
like CWA, but not as simple as adding $\neg \mathrm{Ab}(t)$ since we need not have constant names for abnormal individuals

Idea: say Ab, Bird, and Fly are the predicates, and suppose there are wffs $\alpha(x), \beta_{1}(x)$, and $\beta_{2}(x)$ such that
$\mathrm{KB}\left[\mathrm{Ab} / \alpha ; \mathrm{Bird} / \beta_{1} ; \mathrm{Fly} / \beta_{2}\right]$ is true and $\forall x[\alpha(x) \supset \mathrm{Ab}(x)]$ is true
then want to conclude by default that
$\forall x[\alpha(x) \equiv \operatorname{Ab}(x)]$ is true.
will ensure that Ab is as small as possible
In general:
where Ab_{i} are the abnormality predicates and P_{i} are all the other predicates,
$\operatorname{Circ}(\mathrm{KB})$ is the set of all wffs of the form

$$
\begin{aligned}
& \mathrm{KB}\left[\mathrm{Ab}_{1} / \alpha_{1} ; \ldots ; \mathrm{Ab}_{n} / \alpha_{n} ; P_{1} / \beta_{1} ; \ldots ; P_{m} / \beta_{m}\right] \\
& \wedge \forall x\left[\alpha_{1}(x) \supset \mathrm{Ab}_{1}(x)\right] \wedge \ldots \wedge \forall x\left[\alpha_{n}(x) \supset \mathrm{Ab}_{n}(x)\right] \\
& \left.\supset \forall x\left[\alpha_{1}(x) \equiv \mathrm{Ab}_{1}(x)\right] \wedge \ldots \wedge \forall x\left[\alpha_{n}(x) \equiv \mathrm{Ab}_{n}(x)\right]\right]
\end{aligned}
$$

Circumscription-2

Theorem: If $\mathrm{KB} \cup \operatorname{Circ}(\mathrm{KB}) \mid=\alpha$ then $\mathrm{KB} \mid={ }_{m} \alpha$
So this gives us a sound but incomplete method of determining minimal entailments
to get a complete version, would have to use "second order logic," which quantifies over predicates
as in: $\forall \phi[\mathrm{KB}[\mathrm{Ab} / \phi \ldots] \wedge \forall x(\phi(x) \supset \mathrm{Ab}(x)) \ldots$
Use: guess at a "minimal" α_{i} and appropriate other β_{i} such that $\mathrm{KB} \mid=\mathrm{KB}[\mathrm{Ab} / \ldots] \wedge \forall x\left[\alpha_{i}(x) \supset \mathrm{Ab}_{i}(x)\right]$, then:

- $\mathrm{KB}[\mathrm{Ab} / \ldots] \wedge \forall x\left[\alpha_{i}(x) \supset \mathrm{Ab}_{i}(x)\right] \supset \forall x\left[\alpha_{i}(x) \equiv \mathrm{Ab}_{i}(x)\right]$ is a member of $\operatorname{Circ}(\mathrm{KB})$
- so KB $\cup \operatorname{Circ}(\mathrm{KB}) \mid=\forall x\left[\alpha_{i}(x) \equiv \operatorname{Ab}_{i}(x)\right]$
- since α_{i} was chosen to be some minimal set of abnormal individuals, it follows from $\mathrm{KB} \cup \mathrm{Circ}(\mathrm{KB})$ that these are the only instances of Ab_{i}
- so any other individual will have the properties of normal individuals

For the bird example, a minimal α is ($x=$ chilly), for which a suitable β_{1} is $\operatorname{Bird}(x)$ and β_{2} is ($x \neq$ chilly).
$\mathrm{KB} \cup \operatorname{Circ}(\mathrm{KB}) \mid=\forall x[(x=\operatorname{chilly}) \equiv \operatorname{Ab}(x)]$
$\mathrm{KB} \cup \operatorname{Circ}(\mathrm{KB}) \mid=\neg \mathrm{Ab}$ (tweety)

Fixed / variable predicates

Imagine KB as before +
$\forall x[\operatorname{Penguin}(x) \supset \operatorname{Bird}(x) \wedge \neg \operatorname{Fly}(x)]$
Get: $\mathrm{KB} \mid=\forall x[$ Penguin $(x) \supset \operatorname{Ab}(x)]$
so minimizing Ab also minimizes penguins!
Get: KB $\mid={ }_{m} \forall x \neg \operatorname{Penguin}(x)$
McCarthy's definition:
Let \mathbf{P} and \mathbf{Q} be sets of predicates
$\boldsymbol{I}_{1} \leq \boldsymbol{I}_{2}$ iff same domain and

1. $\quad \Phi_{1}(P) \subseteq \Phi_{2}(P)$, for every $P \in \mathbf{P} \quad$ ab predicates
2. $\quad \Phi_{1}(Q)=\Phi_{2}(Q)$, for every $Q \notin \mathbf{Q}$
so only predicates in \mathbf{Q} are allowed to vary
Get definition of $1=_{m}$ that is parameterized by what is minimized and what is allowed to vary
need a different definition of $\operatorname{Circ}(\mathrm{KB})$ too
In previous examples, want to minimize Ab while allowing only Fly to vary (so keep Penguin fixed)

Problems:

- need to decide what to allow to vary
- cannot conclude \neg Penguin(tweety) by default!
only get default (\neg Penguin(tweety) \supset Fly (tweety))

Default logic

Beliefs as deductive theory

explicit beliefs $=$ axioms
implicit beliefs = theorems
least set closed under inference rules
e.g. If can prove $\alpha,(\alpha \supset \beta)$, then infer β

Would like to generalize to default rules:

If can prove $\operatorname{Bird}(x)$, but cannot prove $\neg \mathrm{Fly}(x)$, then infer Fly (x).

Problem: how to characterize theorems

cannot write down a derivation as before, since we will not know when to apply default rules no guarantee of unique set of theorems

If cannot infer p, infer q If cannot infer q, infer p ??

Solution: default logic
no notion of theorem
instead: have extensions
sets of sentences that are "reasonable" beliefs, given facts and default rules

Extensions

Default logic uses two components: $\mathrm{KB}=\langle F, D\rangle$

- F is a set of sentences (facts)
- D is a set of default rules: triples $\langle\alpha, \beta, \gamma\rangle$ read as If you can infer α and β is consistent, then infer γ
α : the prerequisite
β : the justification
γ : the conclusion
example: 〈Bird(tweety), Fly(tweety), Fly(tweety)» treat $\langle\operatorname{Bird}(x), \operatorname{Fly}(x), \operatorname{Fly}(x)\rangle$ as set of rules

Default rules where $\beta=\gamma$ are called normal write as $\langle\alpha \Rightarrow \beta$,
will see later a reason for wanting non-normal ones
A set of sentences E is an extension of $\langle F, D\rangle$ iff for every sentence π, E satisfies

$$
\begin{aligned}
& \pi \in E \text { iff } F \cup \Delta \mid=\pi \\
& \text { where } \Delta=\{\gamma \mid\langle\alpha, \beta, \gamma \in D, \alpha \in E, \neg \beta \notin E\}
\end{aligned}
$$

So, an extension E is the set of entailments of $F \cup\{\gamma\}$, where the γ are assumptions from D.
to check if E is an extension, guess at Δ and show that it satisfies the above constraint

Example

Suppose KB has
$F=\operatorname{Bird}($ chilly $), ~ \neg F l y($ chilly $), B \operatorname{Bird}($ tweety $)$
$D=\langle\operatorname{Bird}(x) \Rightarrow \operatorname{Fly}(x)\rangle$
then there is a unique extension:
$\Delta=$ Fly(tweety)

- Resulting E is an extension since tweety is the only t for this Δ such that $\operatorname{Bird}(t) \in E$ and $\neg \operatorname{Fly}(t) \notin E$.
- No other extension, since the same applies no matter what Fly (t) assumptions are in Δ.
But in general can have multiple extensions:
$F=\{$ Republican(dick), Quaker(dick) $\}$
$D=\{\langle\operatorname{Republican}(x) \Rightarrow \neg \operatorname{Pacifist}(x)\rangle$,
conflicting
<Quaker $(x) \Rightarrow \operatorname{Pacifist}(x)$) \}
Have two extensions:
E_{1} has $\Delta=\neg$ Pacifist(dick)
E_{2} has $\Delta=$ Pacifist(dick)
Which to believe?
credulous: choose an extension arbitrarily
skeptical: believe what is common to all extensions
Can sometimes use non-normal defaults to avoid conflicts in defaults

〈Quaker $(x), \operatorname{Pacifist}(x) \wedge \neg \operatorname{Republican}(x), \operatorname{Pacifist}(x)$ 〉

Unsupported conclusions

Definition of extension tries to eliminate facts that do not result from either F or D.
for example, we do not want Yellow(tweety) and its entailments in the extension
no unsupported conclusions
But the definition has a problem:
Suppose $F=\{ \}$ and $D=\langle p$, True, $p>$.
Then $E=$ entailments of $\{p\}$ is an extension
since $p \in E$ and \neg True $\notin E$, for above default
However, no good reason to believe p !
only support for p is default rule, which requires p itself as a prerequisite
so default rule should have no effect
Want unique extension: $E=$ entailments of $\}$
Reiter's definition:
For any set S, let $\Gamma(S)$ be the least set containing F, closed under entailment, and satisfying
if $\langle\alpha, \beta, \gamma\rangle \in D, \alpha \in \Gamma(S)$, and $\neg \beta \notin S$, then $\gamma \in \Gamma(S)$.

A set E is an extension of $\langle F, D\rangle$ iff $E=\Gamma(E)$.

Autoepistemic logic

One disadvantage of default logic is that rules cannot be combined or reasoned about

$$
\langle\alpha, \beta, \gamma\rangle \beta^{?}\langle\alpha, \beta,(\gamma \vee \delta)\rangle
$$

Solution: express defaults as sentences in extended language that talks about belief
for any sentence α, have another sentence $B \alpha$ $B \alpha$ says "I believe α ": autoepistemic logic
e.g. $\forall x[\operatorname{Bird}(x) \wedge \neg \mathbf{B} \neg \operatorname{Fly}(x) \supset \operatorname{Fly}(x)]$
any bird not believed to be flightless flies
These are not sentences of FOL, so what semantics and entailment?
modal logic of belief provide semantics
for here: treat $\mathbf{B} \alpha$ as if it were an new atomic wff
still get: $\forall x[\operatorname{Bird}(x) \wedge \neg \mathbf{B} \neg \operatorname{Fly}(x) \supset \operatorname{Fly}(x) \vee \operatorname{Run}(x)]$
Main property for set of implicit beliefs, E :

1. If $E \mid=\alpha$ then $\alpha \in E$.
2. If $\alpha \in E$ then $\mathbf{B} \alpha \in E$.
3. If $\alpha \notin E$ then $\neg \mathbf{B} \alpha \in E$. (negative introspection)

Any such set of sentences is called stable

Stable expansions

Given KB, possibly containing B operators, what is an appropriate stable set of beliefs?
want a stable set that is minimal
Moore's definition: A set of sentences E is called a stable expansion of KB iff it satisfies
$\pi \in E \quad$ iff $\quad \mathrm{KB} \cup \Delta \mid=\pi$,
where $\Delta=\{\mathrm{B} \alpha \mid \alpha \in E\} \cup\{\neg \mathbf{B} \alpha \mid \alpha \notin E\}$
fixed point of another operator
analogous to the extensions of default logic

Example:

for $\mathrm{KB}=\{$ Bird(chilly), \neg Fly(chilly), Bird(tweety), $\forall x[\operatorname{Bird}(x) \wedge \neg \mathrm{B} \neg \mathrm{Fly}(x) \supset \mathrm{Fly}(x)]\}$
get a unique stable expansion containing Fly(tweety)
As in default logic, stable expansions are not uniquely determined
$K B=\{(\neg \mathbf{B} p \supset q),(\neg \mathbf{B} q \supset p)\}$
2 stable expansions: one with p, one with q
$\mathrm{KB}=\{(\neg \mathbf{B} p \supset p)\} \quad$ (sell-defeating default) no stable expansions - so what to believe?

Enumerating stable expansions

Define: A wff is objective if it has no B operators
When a KB is propositional, and B operators only dominate objective wffs, then we can enumerate all stable expansions using the following:

1. Suppose $\mathbf{B} \alpha_{1}, \mathbf{B} \alpha_{2}, \ldots \mathbf{B} \alpha_{n}$ are all the \mathbf{B} wffs in KB.
2. Replace some of these by True and the rest by \neg True in KB and simplify. Call the result KB° (it's objective). at most 2^{n} possible replacements
3. Check that for each α_{i},

- if $\mathrm{B} \alpha_{i}$ was replaced by True, then $\mathrm{KB}^{\circ} \mid=\alpha_{i}$
- if $\mathbf{B} \alpha_{i}$ was replaced by \neg True, then $\mathrm{KB}^{\circ} \mid \neq \alpha_{i}$

4. If yes, then KB° determines a stable expansion.
entailments of $K B^{\circ}$ are the objective part

Example:

For $\mathrm{KB}=\{$ Bird(chilly), \neg Fly(chilly), Bird(tweety), $[$ Bird(tweety) $\wedge \neg \mathbf{B} \neg$ Fly(tweety) \supset Fly(tweety)], $[\operatorname{Bird}($ chilly $) \wedge \neg \mathbf{B} \neg \mathrm{Fly}($ chilly $) \supset \mathrm{Fly}($ chilly $)]\}$
Two B wffs: $\mathbf{B} \neg$ Fly(tweety) and $\mathbf{B} \neg$ Fly(chilly), so four replacements to try
Only one works: $\quad \mathbf{B} \neg$ Fly(tweety) $\rightarrow \neg$ True, B \rightarrow Fly (chilly) \rightarrow True
Resulting KB° has $($ Bird(tweety $) \supset$ Fly (tweety)

More ungroundedness

Definition of stable expansion may not be strong enough

$\mathrm{KB}=\{(\mathbf{B} p \supset p)\}$ has 2 stable expansions:

- one without p and with $\neg \mathbf{B} p$
corresponds to $K B^{\circ}=\{ \}$
- one with p and $\mathbf{B} p$.
corresponds to $\mathrm{KB}^{\circ}=\{p\}$
But why should p be believed?
only justification for having p is having $\mathbf{B} p$!
similar to problem with default logic extension
Konolige's definition:
A grounded stable expansion is a stable expansion that is minimal wrt to the set of sentences without \mathbf{B} operators.
rules out second stable expansion

Other examples suggest that an even stronger definition is required!

can get an exact equivalence with Reiter's definition of extension in default logic

