Strictness of FOL

Generics vs. L	Jniversals
4 Violing hove four strings	
vs.	
5 All violins have four strings	
VS	_ .
? All violins that are not E_1 or four strings	E_2 or have
(exceptions usually can	not be enumerated)
Similarly, for general prop	erties of individuals
Alexander the great: ruthles	sness
Ecuador: exports	
pneumonia: treatment	
Goal: be able to say a <i>P</i> i but not necessarily	s a <i>Q</i> <u>in general,</u>
reasonable to conclude $Q(a)$ unless there is a good reasonable to conclude $Q(a)$) given <i>P</i> (<i>a</i>) on not to
Here: qualitative version (no numbers)
KB & B © Brachman & Levesque 2005	Defaults

Varieties of defaults

General statements

- statistical: Most P's are Q's.
 - People living in Quebec speak French.
- normal: All normal P's are Q's.
 - Polar bears are white.
- prototypical: The prototypical P is a Q.
 Owls hunt at night.

Representational

- conversational: Unless I tell you otherwise, a P is a Q.
 - default slot values in frames
 - disjointness in IS-A hierarchy (sometimes)
 - closed-world assumption (below)

Epistemic rationales

- familiarity: If a *P* was not a *Q*, you would know it.
 - an older brother
 - very unusual individual, situation or event
- group confidence: All known *P*'s are *Q*'s.
 - NP-hard problems unsolvable in poly time.

Defaults

Defaults

Persistence rationale

- inertia: A P is a Q if it used to be a Q.
 - colours of objects
 - locations of parked cars (for a while!)

KR & R © Brachman & Levesque 2005

KR & R © Brachman & Levesque 2005

Closed-world assumption Reiter's observation: There are usually many more -ve facts than +ve facts! AirLine Example: flight guide provides DirectConnect(cleveland,toronto) DirectConnect(toronto,northBay) DirectConnect(toronto,winnipeg) ... but not: -DirectConnect(cleveland,northBay) Conversational default, called CWA: only +ve facts will be given, relative to some vocabulary But note: KB \neq -ve facts would have to answer: "I don't know" Proposal: a new version of entailment $\mathsf{KB} \models_{c} \alpha \text{ iff } \mathsf{KB} \cup \mathsf{Negs} \models \alpha$ a common pattern: $KB' = KB \cup \Delta$ where Negs = { $\neg p$ |pground atomic and KB $\neq p$ } Note: relation to negation as failure Gives: KB \models_c +ve facts and -ve facts

Properties of CWA

Query evaluation		
With CWA can reduce queries (without quantifiers) recursively to atomic case:		
$KB \models_{c} (\alpha \land \beta) \text{ iff } KB \models_{c} \alpha \text{ and } KB \models_{c} \beta$		
$KB \models_{c} (\alpha \lor \beta) \text{ iff } KB \models_{c} \alpha \text{ or } KB \models_{c} \beta$		
$KB \models_{c} \neg (\alpha \land \beta) \text{ iff } KB \models_{c} \neg \alpha \text{ or } KB \models_{c} \neg \beta$		
$KB \models_{c} \neg(\alpha \lor \beta) \text{ iff } KB \models_{c} \neg\alpha \text{ and } KB \models_{c} \neg\beta$		
$KB \models_{c} \neg \neg \alpha \text{ iff } KB \models_{c} \alpha$		
reduces to: KB $\models_c \lambda$, where λ is a literal		
If KB ∪ <i>Negs</i> is consistent, get		
$KB \models_{c} \neg \alpha \text{ iff } KB \not\models_{c} \alpha$		
reduces to: KB $\models_c p$, where <i>p</i> is atomic		
If atomic wffs stored as a table, deciding whether or not KB $\models_c \alpha$ is like DB-retrieval:		
 reduce query to set of atomic queries 		
 solve atomic queries by table lookup 		
Different from ordinary logic reasoning		
e.g. no reasoning by cases		
See "vivid reasoning" (discussed later)		

Consistency

If KB is set of atoms, then KB \cup <i>Negs</i> is always consistent
Also works if KB has conjunctions and if KB has -ve disjunctions
If KB contains $(\neg p \lor \neg q)$. Add both $\neg p$, $\neg q$.
Problem when KB \models ($\alpha \lor \beta$), but KB $\not\models \alpha$ and KB $\not\models \beta$
e.g. $KB = (p \lor q)$ Negs = { $\neg p, \neg q$ }
so KB \cup <i>Negs</i> is inconsistent
and for every α , KB $\models_c \alpha$!
Solution: only apply CWA to atoms that are "uncontroversial"
One approach: GCWA
Negs = { $\neg p$ If KB = ($p \lor q_1 \lor \dots \lor q_n$)
then KB $\models (q_1 \lor \lor q_n)$
When KB is consistent, get:
– KB ∪ Negs consistent
 everything derivable is also derivable by CWA
KR & R © Brachman & Levesque 2005 Defaults

Non-monotonicity

Minimizing abnormality Idea: CWA makes the extension of all predicates as small as possible by adding negated literals Generalize: make extension of selected predicates as small as possible Ab predicates used to talk about defaults Example: $\forall x [Bird(x) \land \neg Ab(x) \supset Fly(x)]$ All birds that are normal fly Bird(chilly), \neg Fly(chilly), Bird(tweety), (chilly \neq tweety) Would like Fly(tweety), but KB \neq Fly(tweety) because there is an interp I where Φ (tweety) $\in \Phi$ (Ab) Solution: consider only interps where $\Phi(Ab)$ is as small as possible, relative to KB for example: need $\Phi(\text{chilly}) \in \Phi(\text{Ab})$ Generalizes to many Ab_i predicates

Minimal Entailment

Given two interps over the same domain, I_1 and I_2	
	$I_1 \leq I_2$ iff $\Phi_1(Ab) \subseteq \Phi_2(Ab)$ for every Ab predicate
	$I_1 < I_2$ iff $I_1 \le I_2$ but not $I_2 \le I_1$
	read: I_1 is more normal than I_2
Defin	e a new version of entailment, \models_m , by
	$KB \models_m \alpha \text{ iff for every } I,$
	if $I \models KB$ and no $I^* < I$ s.t. $I^* \models KB$ then $I \models \alpha$.
	So only requiring α to be true in interpretations satisfying KB that are minimal in abnormalities
Get:	$KB \models_m Fly(tweety)$
	because if interp satisfies KB and is minimal, only $\Phi(\text{chilly})$ will be in $\Phi(\text{Ab})$.
Minin	nization need not produce a <u>unique</u> interpretation:
	Bird(a), Bird(b), $[\neg Fly(a) \lor \neg Fly(b)]$
	Two minimal interpretations
	$KB \models_{m} \mathrm{Fly}(a), \ KB \models_{m} \mathrm{Fly}(b), \ KB \models_{m} [\mathrm{Fly}(a) \lor \mathrm{Fly}(b)]$
	Different from the CWA: no inconsistency!
KB & B	© Brachman & Levesque 2005

Circumscription Can achieve similar effects by leaving entailment alone, but adding a set of sentences to the KB like CWA, but not as simple as adding $\neg Ab(t)$ since we need not have constant names for abnormal individuals Idea: say Ab, Bird, and Fly are the predicates, and suppose there are wffs $\alpha(x)$, $\beta_1(x)$, and $\beta_2(x)$ such that $KB[Ab/\alpha;Bird/\beta_1;Fly/\beta_2]$ is true and $\forall x[\alpha(x) \supset Ab(x)]$ is true then want to conclude by default that $\forall x[\alpha(x) \equiv Ab(x)]$ is true. will ensure that Ab is as small as possible In general: where Ab, are the abnormality predicates and P_i are all the other predicates, Circ(KB) is the set of all wffs of the form $\mathsf{KB}[\mathrm{Ab}_1/\alpha_1;\ldots;\mathrm{Ab}_n/\alpha_n;P_1/\beta_1;\ldots;P_m/\beta_m]$ $\wedge \forall x [\alpha_1(x) \supset Ab_1(x)] \land \dots \land \forall x [\alpha_n(x) \supset Ab_n(x)]$... $\supset \forall x [\alpha_1(x) \equiv Ab_1(x)] \land ... \land \forall x [\alpha_n(x) \equiv Ab_n(x)]]$

Defaults

Circumscription - 2

Theorem: If KB \cup Circ(KB) = α then KB = _{<i>m</i>} α		
So this gives us a sound but incomplete method of determining minimal entailments		
to get a complete version, would have to use "second order logic," which quantifies over predicates		
as in: $\forall \phi[KB[Ab/\phi] \land \forall x(\phi(x) \supset Ab(x))$		
Use: guess at a "minimal" α_i and appropriate other β_i such that KB = KB[Ab/] $\land \forall x [\alpha_i(x) \supset Ab_i(x)]$, then:		
 KB[Ab/] ∧ ∀x[α_i(x) ⊃ Ab_i(x)] ⊃ ∀x[α_i(x) ≡ Ab_i(x)] is a member of Circ(KB) 		
• so KB \cup Circ(KB) $\models \forall x [\alpha_i(x) \equiv Ab_i(x)]$		
 since α_i was chosen to be some minimal set of abnormal individuals, it follows from KB ∪ Circ(KB) that these are the only instances of Ab_i 		
 so any other individual will have the properties of normal individuals 		
For the bird example, a minimal α is $(x = \text{chilly})$, for which a suitable β_1 is $\text{Bird}(x)$ and β_2 is $(x \neq \text{chilly})$.		
$KB \cup Circ(KB) \models \forall x[(x = \mathrm{chilly}) \equiv \mathrm{Ab}(x)]$		
$KB \cup Circ(KB) \models \neg Ab(tweety)$		

Defaults

Fixed / variable predicates		
Imagine KB as before +		
$\forall x [\operatorname{Penguin}(x) \supset \operatorname{Bird}(x) \land \neg \operatorname{Fly}(x)]$		
Get: KB $\models \forall x [Penguin(x) \supset Ab(x)]$		
so minimizing Ab also minimizes penguins!		
Get: KB $\models_m \forall x \neg \text{Penguin}(x)$		
McCarthy's definition:		
Let P and Q be sets of predicates		
$I_1 \leq I_2$ iff same domain and		
1. $\Phi_1(P) \subseteq \Phi_2(P)$, for every $P \in \mathbf{P}$ Ab predicates		
2. $\Phi_1(Q) = \Phi_2(Q)$, for every $Q \notin \mathbf{Q}$		
so only predicates in ${f Q}$ are allowed to vary		
Get definition of $ =_m$ that is parameterized by what is minimized and what is allowed to vary need a different definition of Circ(KB) too		
In previous examples, want to minimize ${\rm Ab}$ while allowing only ${\rm Fly}$ to vary (so keep ${ m Penguin}$ fixed)		
Problems:		
 need to decide what to allow to vary 		
 cannot conclude —Penguin(tweety) by default! 		
only get default (¬Penguin(tweety) ⊃Fly(tweety))		
KR & R © Brachman & Levesque 2005 Defaults		

Default logic

Beliefs as deductive theory

explicit beliefs = axioms

implicit beliefs = theorems

least set closed under inference rules

e.g. If can prove $\alpha, (\alpha \!\supset\! \beta),$ then infer β

Would like to generalize to default rules:

If can prove Bird(x), but <u>cannot</u> prove $\neg Fly(x)$, then infer Fly(x).

Problem: how to characterize theorems

cannot write down a derivation as before, since we will not know when to apply default rules

no guarantee of unique set of theorems

If cannot infer *p*, infer *q* If cannot infer *q*, infer *p* ??

Solution: default logic

no notion of theorem

instead: have extensions

sets of sentences that are "reasonable" beliefs, given facts and default rules

Defaults

KR & R © Brachman & Levesque 2005

Extensions Default logic uses two components: $KB = \langle F, D \rangle$ • F is a set of sentences (facts) • *D* is a set of <u>default rules</u>: triples $\langle \alpha, \beta, \gamma \rangle$ read as If you can infer α and β is consistent, then infer y a: the prerequisite β: the justification γ: the conclusion example: <Bird(tweety), Fly(tweety), Fly(tweety)> treat (Bird(x), Fly(x), Fly(x)) as set of rules Default rules where $\beta = \gamma$ are called <u>normal</u> write as $\langle \alpha \Rightarrow \beta \rangle$ will see later a reason for wanting non-normal ones A set of sentences *E* is an <u>extension</u> of $\langle F, D \rangle$ iff for every sentence π, E satisfies $\pi \in E$ iff $F \cup \Delta \models \pi$ where $\Delta = \{\gamma \mid \langle \alpha, \beta, \gamma \rangle \in D, \ \alpha \in E, \neg \beta \notin E\}$ So, an extension *E* is the set of entailments of $F \cup \{\gamma\}$, where the γ are assumptions from *D*. to check if E is an extension, guess at Δ and show that it satisfies the above constraint

KR & R	© Brachman & Levesque 2005	Defaults

Autoepistemic logic

One disadvantage of default logic is that rules cannot be combined or reasoned about $\langle \alpha, \beta, \gamma \rangle = \beta^2 \langle \alpha, \beta, (\gamma \lor \delta) \rangle$		
Solution: express defaults as <u>sentences</u> in extended language that talks about belief for any sentence α , have another sentence $\mathbf{B}\alpha$ $\mathbf{B}\alpha$ says "I believe α ": autoepistemic logic $\mathbf{P} = \mathbf{Q} \forall \mathbf{r} [\operatorname{Bird}(\mathbf{x}) \land -\mathbf{B} - \operatorname{Elv}(\mathbf{x}) \supset \operatorname{Elv}(\mathbf{x})]$		
any bird not believed to be flightless flies		
These are not sentences of FOL, so what semantics and entailment?		
modal logic of belief provide semantics		
for here: treat B α as if it were an new atomic wff		
still get: $\forall x [Bird(x) \land \neg B \neg Fly(x) \supset Fly(x) \lor Run(x)]$		
Main property for set of implicit beliefs, E:		
1. If $E \models \alpha$ then $\alpha \in E$. (entailment)		
2. If $\alpha \in E$ then $\mathbf{B}\alpha \in E$. (positive introspection)		
3. If $\alpha \notin E$ then $\neg \mathbf{B} \alpha \in E$. (negative introspection)		
Any such set of sentences is called stable		
KR & R © Brachman & Levesque 2005 Defaults		

Stable expansions	
Given KB, possibly containing B operators, what is an appropriate stable set of beliefs? want a stable set that is minimal	
Moore's definition: A set of sentences <i>E</i> is called a <u>stable expansion</u> of KB iff it satisfies $\pi \in E \text{iff} \text{KB} \sqcup A \models \pi$	
where $\Delta = \{\mathbf{B}\alpha \alpha \in E\} \cup \{\neg \mathbf{B}\alpha \alpha \notin E\}$ fixed point of another operator analogous to the extensions of default logic	
Example:	
for KB = {Bird(chilly), \neg Fly(chilly), Bird(tweety), $\forall x[Bird(x) \land \neg \mathbf{B} \neg Fly(x) \supset Fly(x)]$ }	
get a unique stable expansion containing Fly(tweety)	
As in default logic, stable expansions are not uniquely determined	
$KB = \{ (\neg \mathbf{B}p \supset q), (\neg \mathbf{B}q \supset p) \}$	
2 stable expansions: one with p , one with q	
$KB = \{(\neg \mathbf{B}p \supset p)\}$ (self-defeating default)	
no stable expansions - so what to believe?	
KR & R © Brachman & Levesque 2005 Defaults	

Enumerating stable expansions

More ungroundedness Definition of stable expansion may not be strong enough KB = { $(\mathbf{B}p \supset p)$ } has 2 stable expansions: - one without p and with $\neg \mathbf{B}p$ corresponds to $KB^\circ = \{\}$ - one with p and $\mathbf{B}p$. corresponds to $KB^\circ = \{p\}$ But why should *p* be believed? only justification for having p is having $\mathbf{B}p!$ similar to problem with default logic extension Konolige's definition: A grounded stable expansion is a stable expansion that is minimal wrt to the set of sentences without B operators. rules out second stable expansion Other examples suggest that an even stronger definition is required! can get an exact equivalence with Reiter's definition of extension in default logic