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Strictness of FOL

To reason from P(a) to Q(a), need either
• facts about a itself
• universals, e.g. ∀x(P(x) ⊃ Q(x))

– something that applies to all instances
– all or nothing!

But most of what we learn about the world is 
in terms of generics

• e.g.,  encyclopedia entries for ferris wheels, violins, 
turtles, wildflowers 

Properties are not strict for all instances, 
because

• genetic / manufacturing varieties
– early ferris wheels

• borderline cases
– toy violins

• imagined cases
– flying turtles

• cases in exceptional circumstances
– dried wildflowers

• ...
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Generics vs. Universals

4 !Violins have four strings
! !! vs.
5 !All violins have four strings
! !! vs.
? !All violins that are not E1 or E2 or ... have 
!four strings

! (exceptions usually cannot be enumerated)
!

Similarly, for general properties of individuals 
! !Alexander the great: ruthlessness
! !Ecuador:  exports
! !pneumonia:  treatment

! !!

Goal:  be able to say a P is a Q in general, 
but not necessarily 

! reasonable to conclude Q(a) given P(a)
unless there is a good reason not to

!

Here: qualitative version (no numbers)
!  
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Varieties of defaults

General statements
• statistical:   Most P's are Q's.

People living in Quebec speak French.
• normal:! All normal P's are Q's.

Polar bears are white.
• prototypical:  The prototypical P is a Q.

Owls hunt at night.

Representational
• conversational: Unless I tell you otherwise, a P is a Q.

– default slot values in frames
– disjointness in IS-A hierarchy (sometimes)
– closed-world assumption (below)

Epistemic rationales
• familiarity:  If a P was not a Q, you would  know it.

– an older brother
– very unusual individual, situation or event

• group confidence:  All known P's are Q's.
! NP-hard problems unsolvable in poly time.

Persistence rationale
• inertia:  A P is a Q if it used to be a Q.

– colours of objects
– locations of parked cars (for a while!)
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Closed-world assumption

Reiter's observation: 
! There are usually many more -ve facts than +ve facts!

AirLine Example:  flight guide provides
! DirectConnect(cleveland,toronto)
!DirectConnect(toronto,northBay) 
DirectConnect(toronto,winnipeg)  ...

! but not:  ¬DirectConnect(cleveland,northBay)

Conversational default, called CWA:
! only +ve facts will be given, relative to some 

vocabulary

But note:   KB ⎥≠  -ve facts
! would have to answer:  “I don't know”

Proposal:  a new version of entailment
! KB ⎥=c α    iff   KB ∪ Negs ⎥= α

' 'where 
! Negs = {¬p | p ground atomic and KB⎥≠ p}

! Note: relation to negation as failure

Gives:  KB ⎥=c  +ve facts and -ve facts

a common pattern:
KB ‘ =  KB  ∪  Δ
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Properties of CWA
For every sentence α without quantifiers, 
either KB ⎥=c α   or  KB ⎥=c ¬α  (or both)
Why?   Inductive argument:

• immediately true for atomic sentences
• push ¬ in,  e.g.  KB ⎥= ¬¬α  iff  KB ⎥= α
• KB ⎥=  (α ∧ β)    iff   KB ⎥= α  and  KB ⎥= β

• Say  KB ⎥≠c (α ∨ β).
Then KB ⎥≠c α and  KB ⎥≠c β.
So by induction, KB ⎥=c ¬α and KB ⎥=c ¬β.  
Thus,  KB ⎥=c ¬(α ∨ β).

CWA is an assumption about complete 
knowledge

! never any unknowns, relative to vocabulary

In general, a KB has incomplete knowledge,
! e.g., if KB = (p ∨ q), then KB ⎥= (p ∨ q),   but

KB⎥≠ p,   KB⎥≠ ¬p,  KB⎥≠ q, and KB⎥≠ ¬q

But with CWA, always have:
! If  KB ⎥=c (α ∨ β),  then  KB ⎥=c α  or  KB ⎥=c β

! similar argument to above
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Query evaluation
With CWA can reduce queries (without 
quantifiers) recursively to atomic case:

! !KB ⎥=c (α ∧ β)   iff  KB ⎥=c α   and  KB ⎥=c β

! !KB ⎥=c (α ∨ β)   iff  KB ⎥=c α   or   KB ⎥=c β

' 'KB ⎥=c ¬(α ∧ β)   iff  KB ⎥=c ¬α   or   KB ⎥=c ¬β

' 'KB ⎥=c ¬(α ∨ β)   iff  KB ⎥=c ¬α   and   KB ⎥=c ¬β

' 'KB ⎥=c ¬¬α    iff  KB ⎥=c α

! reduces to:    KB ⎥=c  λ,   where λ is a literal

If   KB ∪ Negs   is consistent,  get
! !KB ⎥=c ¬α    iff  KB ⎥≠c α

! reduces to:    KB ⎥=c p,   where p is atomic

If atomic wffs stored as a table,  deciding 
whether or not  KB ⎥=c α  is like DB-retrieval:

• reduce query to set of atomic queries
• solve atomic queries by table lookup

Different  from ordinary logic reasoning
! e.g. no reasoning by cases

' see “vivid reasoning” (discussed later)



KR & R! ©  Brachman & Levesque  2005   Defaults      

Consistency

If KB is set of atoms, then KB ∪ Negs  is always 
consistent
Also works if KB has conjunctions and if KB 
has -ve disjunctions

! If KB contains (¬p ∨ ¬q).  Add both ¬p, ¬q.

Problem when KB ⎥= (α ∨ β),   but KB⎥≠ α   and  
KB⎥≠ β

' e.g.  KB = (p ∨ q)    Negs = {¬p, ¬q}  

' 'so KB ∪ Negs  is inconsistent
! !and for every α,  KB ⎥=c α !

Solution:  only apply CWA to atoms that are 
“uncontroversial”

! One approach:  GCWA
! Negs  = {¬p  |  If  KB ⎥= (p ∨ q1 ∨ ... ∨ qn)
!! ! ! then KB ⎥=  (q1 ∨ ... ∨ qn)}

! When KB is consistent, get:
– KB ∪ Negs  consistent
– everything derivable is also derivable by CWA   
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Quantifiers and Equality

So far, results do not extend to wffs with quantifiers
• can have KB ⎥≠c ∀x.α  and KB ⎥≠c ¬∀x.α

• e.g.  just because for every term t, we have 
! ! KB ⎥=c ¬DirectConnect(myHome, t) 
!does not mean that
!! KB ⎥=c ∀x[¬DirectConnect(myHome, x)]

But may want to treat KB as providing complete 
information about what individuals exist

Define:  KB ⎥=c2  α   iff   KB ∪ Negs ∪ Dc  ∪ Un ⎥= α

! ! Negs  is  as before
! !Dc  is domain closure: ∀x[x=c1 ∨ ... ∨ x=cn], 

! !Un  is unique names:  (ci ≠ cj),  for i ≠ j

! !! where the ci are all the constants
!! appearing in KB (assumed finite)

Get:! KB ⎥=c2 ∃x.α  iff  KB ⎥=c2  α[x/c],
' ' ' ' for some c appearing in the KB
! KB ⎥=c2 ∀x.α  iff  KB ⎥=c2  α[x/c], 
' ' ' ' for all c appearing in the KB
! KB ⎥=c2 (c = d)  iff c and d  are the same constant
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Non-monotonicity

Ordinary entailment is monotonic
! If KB ⎥= α, then KB*⎥= α,  for any KB ⊆ KB* 

But CWA entailment is not monotonic
! Can have KB ⎥=c α,  KB ⊆ KB',  but KB' ⎥≠c α

! e.g.!{p} ⎥=c ¬q,  but  {p, q} ⎥≠c ¬q
!

Suggests study of non-monotonic reasoning
• start with explicit beliefs
• generate implicit beliefs non-monotonically, 

taking defaults into account
! e.g.  Birds fly.

• implicit beliefs may not be uniquely determined
! vs. monotonic case: {α  |  KB |= α}

!

Will consider three approaches:
• circumscription

! interpretations that minimize abnormality

• default logic
! KB as facts + default rules of inference

• autoepistemic logic
! facts that refer to what is/is not believed
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Minimizing abnormality

Idea:
! CWA makes the extension of all predicates as small 

as possible
! by adding negated literals

! Generalize:  make extension of selected predicates 
as small as possible

! Ab predicates used to talk about defaults

Example:
! ∀x[Bird(x) ∧ ¬Ab(x) ⊃ Fly(x)]

! All birds that are normal fly

! Bird(chilly),  ¬Fly(chilly),  Bird(tweety),  (chilly ≠ tweety)

Would like Fly(tweety),  but  KB |≠ Fly(tweety)
! because there is an interp I where
!Φ(tweety)  ∈  Φ(Ab)

Solution: consider only interps where Φ(Ab) 
is as small as possible, relative to KB

! for example:  need Φ(chilly)  ∈  Φ(Ab)

Generalizes to many Abi predicates
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Minimal Entailment
Given two interps over the same domain, I1 and I2

! I1 ≤ I2  iff  Φ1(Ab) ⊆ Φ2(Ab)'
! for every Ab predicate

! I1 < I2  iff  I1 ≤ I2  but not I2 ≤ I1
! !read:  I1 is more normal than I2

Define a new version of entailment, |=m,  by

! KB |=m α   iff  for every I,  
! !if  I |= KB  and  no I*< I  s.t. I* |= KB
!   then  I |= α.

' So only requiring α to be true in interpretations 
satisfying KB that are minimal in abnormalities

Get:   KB |=m Fly(tweety)

! because if interp satisfies KB and is minimal,
only Φ(chilly) will be in Φ(Ab).

Minimization need not produce a unique interpretation:
! Bird(a),  Bird(b),  [¬Fly(a) ∨ ¬Fly(b)]

! !Two minimal interpretations

! KB |≠m Fly(a),  KB |≠m Fly(b),  KB |=m [Fly(a) ∨ Fly(b)]
! !Different from the CWA:  no inconsistency!
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Circumscription

Can achieve similar effects by leaving entailment 
alone, but adding a set of sentences to the KB

! like CWA, but not as simple as adding ¬Ab(t) since we 
need not have constant names for abnormal individuals

Idea:  say Ab, Bird, and Fly are the predicates, 
and suppose there are wffs α(x), β1(x), and β2(x) 
such that

! !KB[Ab/α; Bird/β1; Fly/β2]  is true
and  ∀x[α(x) ⊃ Ab(x)]  is true

then want to conclude by default that 
' '' ∀x[α(x) ≡ Ab(x)]  is true.

! !will ensure that Ab is as small as possible

In general:  
! where Abi  are the abnormality predicates
!    and! Pi  are all the other predicates,

    Circ(KB) is the set of all wffs of the form
! KB[Ab1/α1; ... ; Abn/αn; P1/β1; ... ; Pm/βm] 
'    ∧ ∀x[α1(x) ⊃ Ab1(x)] ∧ ... ∧ ∀x[αn(x) ⊃ Abn(x)]
! ⊃    ∀x[α1(x) ≡ Ab1(x)] ∧ ... ∧ ∀x[αn(x) ≡ Abn(x)]] ...
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Circumscription - 2
Theorem:   If  KB ∪ Circ(KB) |= α   then  KB |=m α

So this gives us a sound but incomplete method of 
determining minimal entailments

! to get a complete version, would have to use “second 
order logic,” which quantifies over predicates
! as in:  ∀φ[KB[Ab/φ ...] ∧ ∀x(φ(x) ⊃ Ab(x))  ...

Use:  guess at a “minimal” αi and appropriate other βi 
such that KB |= KB[Ab/...]  ∧  ∀x[αi(x) ⊃ Abi(x)], then:

• KB[Ab/...] ∧ ∀x[αi(x) ⊃ Abi(x)]  ⊃  ∀x[αi(x) ≡ Abi(x)]
is a member of Circ(KB)

• so KB ∪ Circ(KB) |= ∀x[αi(x) ≡ Abi(x)]

• since αi  was chosen to be some minimal set of 
abnormal individuals, it follows from KB ∪ Circ(KB) 
that these are the only instances of Abi

• so any other individual will have the properties of 
normal individuals

For the bird example, a minimal α is  (x = chilly), for 
which  a suitable β1 is Bird(x) and β2 is  (x ≠ chilly).

! KB ∪ Circ(KB)  |= ∀x[(x = chilly) ≡ Ab(x)]

! KB ∪ Circ(KB)  |= ¬Ab(tweety)
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Fixed / variable predicates
Imagine KB as before +

' ∀x[Penguin(x)  ⊃  Bird(x) ∧ ¬Fly(x)]
! Get:   KB |= ∀x[Penguin(x) ⊃ Ab(x)]

! so minimizing Ab also minimizes penguins!
! Get:   KB |=m ∀x¬Penguin(x)

McCarthy's definition:
! Let P and Q be sets of predicates

! I1 ≤ I2  iff  same domain and  
' 1.' Φ1(P) ⊆ Φ2(P), for every P∈P!   Ab predicates

' 2.' Φ1(Q) = Φ2(Q), for every Q∉Q

! so only predicates in Q are allowed to vary

Get definition of  |=m  that is parameterized by what is 
minimized and what is allowed to vary

need a different definition of Circ(KB) too

In previous examples, want to minimize Ab while 
allowing only Fly to vary (so keep Penguin fixed)

Problems:
• need to decide what to allow to vary
• cannot conclude ¬Penguin(tweety) by default!

only get default (¬Penguin(tweety) ⊃ Fly(tweety))
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Default logic

Beliefs as deductive theory
! explicit beliefs = axioms 
! implicit beliefs = theorems

! least set closed under inference rules
! e.g.  If can prove α,  (α ⊃ β),  then infer β

Would like to generalize to default rules:
! If can prove Bird(x), but cannot prove ¬Fly(x), !

then infer Fly(x).

Problem: how to characterize theorems
! cannot write down a derivation as before, since we 

will not know when to apply default rules
! no guarantee of unique set of theorems
! !If cannot infer p, infer q
!If cannot infer q, infer p    ??

Solution:  default logic 
! no notion of theorem
! instead:  have extensions

! sets of sentences that are “reasonable” beliefs, 
given facts and default rules
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Extensions
Default logic uses two components: KB = ‹F,D›

• F  is a set of sentences (facts)
• D is a set of default rules:   triples  ‹α, β, γ›  read as

! !If you can infer α and β is consistent,     
!then infer γ

'   α:  the prerequisite
'   β:  the justification
'   γ:   the conclusion

! !example:  ‹Bird(tweety), Fly(tweety), Fly(tweety)›
! treat ‹Bird(x), Fly(x), Fly(x)›  as set of rules

! Default rules where β=γ are called normal
! !write as ‹α ⇒ β›

! will see later a reason for wanting non-normal ones

A set of sentences E is an extension of ‹F,D›
iff for every sentence π, E satisfies

' π ∈ E  iff  F ∪ Δ  |= π
!    where  Δ  =  {γ  |  ‹α, β, γ› ∈ D,  α ∈ E, ¬β ∉ E}

So, an extension E is the set of entailments of 
F ∪ {γ}, where the γ are assumptions from D.

! to check if E is an extension, guess at Δ and 
show that it satisfies the above constraint 
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Example
Suppose KB has

! F = Bird(chilly),  ¬Fly(chilly),   Bird(tweety)
D = ‹Bird(x) ⇒ Fly(x)›

then there is a unique extension:  
' Δ  =  Fly(tweety)

• Resulting E is an extension since tweety is the only t for 
this Δ  such that Bird(t) ∈ E and ¬Fly(t) ∉ E.

• No other extension, since  the same applies no matter 
what Fly(t) assumptions are in Δ.

But in general can have multiple extensions:
! F = {Republican(dick), Quaker(dick)}

D = { ‹Republican(x) ⇒ ¬Pacifist(x)›,
!! ‹Quaker(x) ⇒ Pacifist(x)› }

Have two extensions:
! E1  has Δ = ¬Pacifist(dick)

E2  has Δ = Pacifist(dick)

Which to believe?
! credulous:  choose an extension arbitrarily
! skeptical:  believe what is common to all extensions

Can sometimes use non-normal defaults to avoid 
conflicts in defaults

! ‹Quaker(x), Pacifist(x) ∧¬Republican(x), Pacifist(x)›
! but need to consider all possible interactions in defaults!

conflicting 
defaults
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Unsupported conclusions
Definition of extension tries to eliminate facts that 
do not result from either F or D.

! for example, we do not want Yellow(tweety) and its 
entailments in the extension

! no unsupported conclusions

But the definition has a problem:
! Suppose F = {} and D = ‹p, True, p›.
! Then E = entailments of {p} is an extension

! since  p ∈ E  and ¬True ∉ E, for above default

! However, no good reason to believe p!
! only support for p is default rule, which requires 

p itself as a prerequisite
! so default rule should have no effect

! !Want unique extension:  E = entailments of {}

Reiter's definition:
! For any set S, let Γ(S) be the least set containing F, 

closed under entailment, and satisfying
! if ‹α, β, γ› ∈ D, α ∈ Γ(S), and ¬β ∉ S, 
!then γ ∈ Γ(S).

! A set E is an extension of ‹F, D›  iff  E = Γ(E).
! called a fixed point of the Γ operator

note: not Γ(S)
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Autoepistemic logic

One disadvantage of default logic is that 
rules cannot be combined or reasoned about

! ‹α, β, γ›  ß  ‹α, β, (γ ∨ δ)›

Solution: express defaults as sentences in 
extended language that talks about belief

! for any sentence α, have another sentence Bα 
! Bα says "I believe α": autoepistemic logic

! e.g.  ∀x[Bird(x) ∧ ¬B¬Fly(x)  ⊃ Fly(x)]!
! any bird not believed to be flightless flies

These are not sentences of FOL, so what 
semantics and entailment?

! modal logic of belief provide semantics
! for here:  treat Bα as if it were an new atomic wff
! still get: ∀x[Bird(x) ∧ ¬B¬Fly(x)  ⊃  Fly(x) ∨ Run(x)]

Main property for set of implicit beliefs, E:
! 1.! If E |= α  then α ∈ E.! ! (entailment)!
! 2.! If α ∈ E  then Bα ∈ E.! ! (positive introspection)

! 3.! If α ∉ E  then ¬Bα ∈ E.!(negative introspection)

! Any such set of sentences is called stable

?
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Stable expansions
Given KB, possibly containing B operators, 
what is an appropriate stable set of beliefs?

! want a stable set that is minimal 

Moore's definition: A set of sentences E is 
called a stable expansion of KB iff it satisfies

! π ∈ E   iff   KB ∪ Δ  |= π, 

' 'where  Δ = {Bα | α ∈ E} ∪ {¬Bα | α ∉ E}
' '' fixed point of another operator

! analogous to the extensions of default logic

Example:  
! for KB = {Bird(chilly),  ¬Fly(chilly),   Bird(tweety),
!!   ∀x[Bird(x) ∧ ¬B¬Fly(x)  ⊃  Fly(x)]}

' get a unique stable expansion containing Fly(tweety)

As in default logic, stable expansions are not 
uniquely determined

! KB = {(¬Bp ⊃ q), (¬Bq ⊃ p)}

' 2 stable expansions: one with p, one with q
! KB = {(¬Bp ⊃ p)}' ' ' ' (self-defeating default)

' no stable expansions  –  so what to believe?
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Enumerating stable 
expansions

Define: A wff is objective if it has no B operators

When a KB is propositional, and B operators only 
dominate objective wffs, then we can enumerate all 
stable expansions using the following:

1.!Suppose Bα1, Bα2, ... Bαn are all the B wffs in KB.
2.!Replace some of these by True and the rest by ¬True 

in KB and simplify.  Call the result KB° (it’s objective).
! at most 2npossible replacements

3.!Check that for each αi, 
– if Bαi was replaced by True, then KB° |= αi

– if Bαi was replaced by ¬True, then KB° |≠ αi

4.!If yes, then KB° determines a stable expansion.
! entailments of KB° are the objective part

Example:
! For KB = {Bird(chilly),  ¬Fly(chilly),   Bird(tweety),
![Bird(tweety) ∧ ¬B¬Fly(tweety)  ⊃  Fly(tweety)],
![Bird(chilly) ∧ ¬B¬Fly(chilly)  ⊃  Fly(chilly)]}

' Two B wffs:  B¬Fly(tweety) and B¬Fly(chilly), 
!so four replacements to try

! Only one works:  !B¬Fly(tweety) → ¬True, 
!! ! ! B¬Fly(chilly) → True

! Resulting KB° has (Bird(tweety) ⊃  Fly(tweety)) 
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More ungroundedness

Definition of stable expansion may not be 
strong enough

! KB = {(Bp ⊃ p)} has 2 stable expansions:
– one without p and with ¬Bp

! corresponds to KB° = {}

– one with p and Bp.
! corresponds to KB° = {p}

! But why should p be believed?
! only justification for having p is having Bp!

! !similar to problem with default logic extension

Konolige's definition:
! A grounded stable expansion is a stable expansion 

that is minimal wrt to the set of sentences without B 
operators.
! rules out second stable expansion

Other examples suggest that an even 
stronger definition is required!

! can get an exact equivalence with Reiter's definition 
of extension in default logic


