
0Welcome!
COMP1511 18s1

Programming Fundamentals

1COMP1511 18s1
— Lecture 4 —

More Functions + Loops
Andrew Bennett

<andrew.bennett@unsw.edu.au>

even more functions
while loops

2

Before we begin…

introduce yourself to the person sitting next to you

why did they decide to study computing?

3

Overview
after this lecture, you should be able to…

handle invalid input to your program

understand why we use functions

write simple functions

understand the basics of while loops

(note: you shouldn’t be able to do all of these immediately after watching this lecture. however, this lecture should (hopefully!) give you the foundations you need to develop these skills. remember

programming is like learning any other language or skill, it takes consistent and regular practice.)

4

Admin
Don’t panic!

these slides are on WebCMS3 (“DRAFT”)

lecture recordings are on WebCMS3

make sure you have home computing set up

make sure you can send and receive uni emails

5

A challenge for you
Guess the Number

computer is thinking of a number
enter a guess

program responds “higher” or “lower” or “correct!”

hint

to start out with:

have a fixed secret number

(i.e. int secret = 5)

scanf their guess

rerun the program to guess another number

6

remember functions?

7

Functions
building blocks in our programs

self-contained, reusable pieces of code

abstraction

8

Anatomy of a Function
return type

(void if no return value)
function name

parameters
(inside parens, comma separated;

void if no parameters)
statements

return statement

int addNumbers (int num1, int num2) {
 int sum = num1 + num2;
 return sum;
}

9

Functions as Building Blocks
for example:

a function that takes a number and multiplies it by 2

we can take our number, and put it into the function, and get it out doubled

int x = 5;
x = doubled (x);

key things:
input (parameters)

output (return value)
functions won’t change values

10

Why Functions?
Revisiting license.c

11

Why Functions?
main function:

want to know what it’s doing
don’t need to know how it’s doing it

12

Side Note: When scanf Goes Wrong
what do we do if somebody enters invalid input?

(e.g. enters a word, not a number)

int a;
int b;
// What happens if they didn't type in two numbers?
int num = scanf("%d %d", &a, &b);

13

Side Note: When scanf Goes Wrong
scanf returns the number of things successfully scanned in

e.g.

int a;
int b;
// num will be 2 if both a and b were scanned successfully
int num = scanf("%d %d", &a, &b);

14

Side Note: When scanf Goes Wrong
we can wrap this in an if statement:

int a;
int b;
// num will be 2 if both a and b were scanned successfully
if (scanf("%d %d", &a, &b) != 2) {
 printf("Invalid input!\n");
}

15

Features of Functions
a function can have zero or more parameter(s)

a function can only return zero or one value(s)

* * *

a function stores a local copy of parameters passed to it

the original values of variables remain unaltered

16

before we get started: extending the challenge

17

Extending the challenge
Guess the Number (v2)

computer is thinking of a number
enter a guess

program responds “higher” or “lower” or “correct!”
then asks again

and again
until you guess correctly

hint

use a loop to run the code multiple times (coming up next!)

18

and now for something new…

19

Remember if statements?

int main (void) {
 printf ("Enter a number: ");

 int num;
 scanf ("%d", &num);

 if (num < 10) {
 printf ("Hello!\n");
 }

 return 0;
}

if the condition is true, then do something, else do something else.

20
What if we wanted to do something more than once?

int main (void) {
 printf ("Enter a number: ");

 int num;
 scanf ("%d", &num);

 while (num < 10) {
 printf ("Hello!\n");
 }

 return 0;
}

21
What if we wanted to do something more than once?

int main (void) {
 printf ("Enter a number: ");

 int num;
 scanf ("%d", &num);

 while (num < 10) {
 printf ("Hello!\n");
 num++;
 }

 return 0;
}

22

Anatomy of a Loop
initialisation

condition
statements

update

int i = 0;
while (i < 10) {
 printf ("Hello (number %d)\n", i);
 i = i + 1;
}

