
Click to edit Present’s Name

Week 1 – Introduction to ROS
David Rajaratnam

COMP3431
Robot Software Architectures

COMP3431 – Robot Software Architectures

People
● Prof. Claude Sammut

– claude@cse.unsw.edu.au
● Timothy Wiley

– t.wiley@unsw.edu.au
● David Rajaratnam

– david.rajaratnam@unsw.edu.au

mailto:claude@cse.unsw.edu.au
mailto:t.wiley@unsw.edu.au
mailto:david.rajaratnam@unsw.edu.au

COMP3431 – Robot Software Architectures

Robots in the Wild
● RoboCup

– Fast Goal
– Goalie Save
– Goal!
– We All Fall Down
– 2014 SPL Final rUNSWift v HTWK

● Rescue
– Negotiator Mobility Chalenge
– 2011 Rescue Reel
– 2010 Rescue News Cast

● At Home
– 2014 Brown Bears Qualification Video
– Nimbro 2013 Winners

● Other Robots
– BigDog Overview
– BigDog Beta
– Darpa Robotics Challenge

http://www.youtube.com/watch?v=b6Zu5fLUa3c
http://www.youtube.com/watch?v=TPUcWRkbJhc
http://www.youtube.com/watch?v=l4xnnXsuyh8
http://www.youtube.com/watch?v=80qVUejnj8U
http://www.youtube.com/watch?v=dhooVgC_0eY
http://www.youtube.com/watch?v=eCBNWfgoqYo
http://www.youtube.com/watch?v=WNofzdX6AQA
http://www.youtube.com/watch?v=GA95ahNSBYI
http://www.youtube.com/watch?v=vrD_i6CKerQ
http://www.youtube.com/watch?v=I1kN1bAeeB0
http://www.youtube.com/watch?v=cNZPRsrwumQ
http://www.youtube.com/watch?v=mXI4WWhPn-U
https://www.youtube.com/watch?v=g0TaYhjpOfo

COMP3431 – Robot Software Architectures

My Research in Robotics
● Cognitive Robotics.
● Make robots behave

intelligently.
● Connect high level

cognition with low-level
sensing/actuators.

● Working with Baxter.
● Blocksworld video...

COMP3431 – Robot Software Architectures

Course Timetable
● Lectures

– Monday 12:00-14:00. Civil Engineering (H20) G6.
● Tutorials / Labs

– Monday 14:00 – 15:00. Mech Eng (J17) level 5 robotics lab.
– Wednesday 10:00 – 12:00. Mech Eng (J17) level 5.

COMP3431 – Robot Software Architectures

Expectation
● C++ / Python.
● Version Control (git).
● Patience – expect things to go wrong.
● Consideration – some team work required.

COMP3431 – Robot Software Architectures

Overview of ROS
● ROS (Robot Operating System) - open-source platform.
● NOT an operating system.
● Peer-to-peer comms for distributed processes (nodes).
● Library of drivers, filters (e.g., mapping), behaviours (e.g.,

navigation).
● Not real-time.
● OS agnostic (in theory).
● Language agnostic:

– Rich APIs for Python and C++, but also other languages.

COMP3431 – Robot Software Architectures

ROS Basics
● ROS Nodes - registration at process startup.
● Two models of comms between nodes:

– ROS Topics: Publisher-subscriber (many-to-many).

/maps/grid1

SubscribersPublishers Named Topic

*Commonly: one publisher and many subscribers

COMP3431 – Robot Software Architectures

ROS Basics
● ROS Nodes - registration at process startup.
● Two models of comms between nodes:

– ROS Topics: Publisher-subscriber (many-to-many).
– ROS Services: remote procedure call (one-to-one).

ServerClient

/maps/enable

Request

Response

Named Service

COMP3431 – Robot Software Architectures

ROS Basics
● ROS Nodes - registration at process startup.
● Two models of comms between nodes:

– ROS Topics: Publisher-subscriber (many-to-many).
– ROS Services: remote procedure call (one-to-one).

● ROS ActionLib
– Services with incremental feedback.
– built using ROS topics.

COMP3431 – Robot Software Architectures

Messages
● Topics and services use a well-

defined message format:
– Primitive types (e.g., int8, bool, string,

etc).
– User-defined types (e.g.,

geometry_msgs/Point,
sensor_msgs/LaserScan).

– ROS takes care of generating
language bindings (e.g., C++, Python).

geometry_msgs/Point

float64 x
float64 y
float64 z

COMP3431 – Robot Software Architectures

Topic Setup
● TCP/IP model - nodes can run on same or different computers.
● ROS master provides directory services.
● Scenario: laser node publishes and mapping node subscribes.

mapping

laser

master

COMP3431 – Robot Software Architectures

Topic Setup
● TCP/IP model - nodes can run on same or different computers.
● ROS master provides directory services.
● Scenario: laser node publishes and mapping node subscribes.

mapping

laser

masterLaser node registers with master that it is
publishing laser scans on a topic (with
some name).

/scan

COMP3431 – Robot Software Architectures

Topic Setup
● TCP/IP model - nodes can run on same or different computers.
● ROS master provides directory services.
● Scenario: laser node publishes and mapping node subscribes.

mapping

laser

masterMapping node registers with master that
it is subscribing to the topic name.

/scan

/scan

COMP3431 – Robot Software Architectures

Topic Setup
● TCP/IP model - nodes can run on same or different computers.
● ROS master provides directory services.
● Scenario: laser node publishes and mapping node subscribes.

mapping

laser

masterMaster tells mapping node that the laser
node is publishing the topic.

/scan

/scan

COMP3431 – Robot Software Architectures

Topic Setup
● TCP/IP model - nodes can run on same or different computers.
● ROS master provides directory services.
● Scenario: laser node publishes and mapping node subscribes.

mapping

laser

masterMapping node initiates direct connection
with laser node.

/scan

/scan

COMP3431 – Robot Software Architectures

Topic Setup
● TCP/IP model - nodes can run on same or different computers.
● ROS master provides directory services.
● Scenario: laser node publishes and mapping node subscribes.

mapping

laser

masterLaser node publishes and mapping node
receives laser scan messages.

/scan

/scan

COMP3431 – Robot Software Architectures

Topic Setup
● TCP/IP model - nodes can run on same or different computers.
● ROS master provides directory services.
● Scenario: laser node publishes and mapping node subscribes.

● NOTE: In reality a bit more complicated:
– Laser node does not have to register first
– Multiple publishers and multiple subscribers
– But same outcome - peer-to-peer data transfer

mapping

laser

master

/scan

/scan

COMP3431 – Robot Software Architectures

Node/Topic Example

COMP3431 – Robot Software Architectures

Nodes in a Distributed System
● Nodes can be on different computers.
● Requires some care:

– Turn off local firewalls
– Evironment variables to specify addresses of nodes and master:

● ROS_MASTER_URI - location of the master.
● ROS_IP - node will register with master using this value.

– Safest to use IP addresses (not hostnames).
export ROS_MASTER_URI=http://192.168.1.2:11311
export ROS_IP=192.168.1.5

COMP3431 – Robot Software Architectures

Catkin Packages
● Catkin – the ROS build system:

– Combines CMake (popular C++ build tool) and some Python components.
● User-built components are organised in packages.
● A typical package:

● Use the Catkin tools: catkin_create_pkg my_package depend1 ...

mypackage/
CMakeLists.txt
package.xml
src/
include/
scripts/
setup.py

- CMake building
- dependencies between packages
- source directory: C++/Python/Java/etc
- typical for C++ headers
- typical for Python
- python installation file

COMP3431 – Robot Software Architectures

Packages – Flexible Structure

● Dependencies to other packages.
● Custom messages and service definitions.
● Specify nodes - 0 or more.
● Libraries – export for use by other packages.

COMP3431 – Robot Software Architectures

Catkin Workspaces
● Used for compiling and running a catkin system.
● Workspace layout:

● Catkin tools are run within workspace directory.
● To compile your workspace:

catkin_ws/
src/

 my_package/
build/
devel/

- individual packages placed here

- install location for development files

$ cd catkin_ws
$ catkin_make

COMP3431 – Robot Software Architectures

Names and Namespaces - Warning
● ROS uses namespaces in different contexts.
● Positive: easy to avoid name clashes.
● Negative: can create confusion.
● Do not confuse namespace usage in:

– Node names.
– Topic names.
– Frames of reference – to be discussed later.

● Node name “/mynode/laser” is different from frame
“/mynode/laser”.

COMP3431 – Robot Software Architectures

In-Class Examples
● Let's create a simple publisher and subscriber

(both in Python and C++).
● Simple example - track location of a robot.

(ignoring orientation):
– Publisher - publish a geometry_msgs/Point.
– Subscriber can then use data (eg., to locate robot on map).

COMP3431 – Robot Software Architectures

Laboratories
● Work through the ROS tutorials.

– http://wiki.ros.org/ROS/Tutorials.
– Note: we use ROS Indigo for compatibility with various

robots.
● First assignment:

– due week 4 – 5.
– Turtlebot navigation and recognition task.
– Get started now!

http://wiki.ros.org/ROS/Tutorials

