COMP4418 17s2 • Week 12 - Exercises
 Decision Making

1. (Markov Decision Process)

Let $g \hat{=}$ "good shape", $d \hat{=}$ "deteriorating" and $b \hat{=}$ "broken."
Consider a discount factor of $\delta=0.9$.
Starting with $v_{0}(g)=0, v_{0}(d)=0$ and $v_{0}(b)=0$, apply three steps of the value iteration algorithm towards computing the optimal policy for the MDP below.

What does the algorithm suggest as the optimal policy at this point?

COMP4418 17s2 • Week 12 • Sample Solutions

Decision Making

1. (Markov Decision Process)

$$
\begin{aligned}
& v_{i+1}(g)= \max \left\{u(g, \text { ignore })+0.9 \cdot \sum_{s^{\prime}} P\left(g, \text { ignore, } s^{\prime}\right) \cdot v_{i}\left(s^{\prime}\right),\right. \\
&\left.u(g, \text { maintain })+0.9 \cdot \sum_{s^{\prime}} P\left(g, \text { maintain, } s^{\prime}\right) \cdot v_{i}\left(s^{\prime}\right)\right\} \\
& v_{i+1}(d)=\max \left\{u(d, \text { ignore })+0.9 \cdot \sum_{s^{\prime}} P\left(d, \text { ignore, } s^{\prime}\right) \cdot v_{i}\left(s^{\prime}\right),\right. \\
&\left.u(d, \text { maintain })+0.9 \cdot \sum_{s^{\prime}} P\left(d, \text { maintain, } s^{\prime}\right) \cdot v_{i}\left(s^{\prime}\right)\right\} \\
& v_{i+1}(b)=\max \left\{u(b, \text { ignore })+0.9 \cdot \sum_{s^{\prime}} P\left(b, \text { ignore }, s^{\prime}\right) \cdot v_{i}\left(s^{\prime}\right),\right. \\
&\left.u(b, \text { maintain })+0.9 \cdot \sum_{s^{\prime}} P\left(b, \text { maintain, } s^{\prime}\right) \cdot v_{i}\left(s^{\prime}\right)\right\}
\end{aligned}
$$

Hence, ;

```
\(v_{1}(g)=\max \{2 ; 1\}=2\)
\(v_{1}(d)=\max \{2 ; 1\}=2\)
\(v_{1}(b)=\max \{0 ;-1\}=0\)
\(v_{2}(g)=\max \{2+0.9 \cdot(0.5 \cdot 2+0.5 \cdot 2) ; 1+0.9 \cdot(1 \cdot 2)\}=3.8\)
\(v_{2}(d)=\max \{2+0.9 \cdot(0.5 \cdot 2+0.5 \cdot 0) ; 1+0.9 \cdot(0.9 \cdot 2+0.1 \cdot 2)\}=2.9\)
\(v_{2}(b)=\max \{0+0.9 \cdot(1 \cdot 0) ;-1+0.9 \cdot(0.8 \cdot 0+0.2 \cdot 2)\}=0\)
\(v_{3}(g)=\max \{2+0.9 \cdot(0.5 \cdot 3.8+0.5 \cdot 2.9) ; 1+0.9 \cdot(1 \cdot 3.8)\}=5.015\)
\(v_{3}(d)=\max \{2+0.9 \cdot(0.5 \cdot 2.9+0.5 \cdot 0) ; 1+0.9 \cdot(0.9 \cdot 3.8+0.1 \cdot 2.9)\}=4.339\)
\(v_{3}(b)=\max \{0+0.9 \cdot(1 \cdot 0) ;-1+0.9 \cdot(0.8 \cdot 0+0.2 \cdot 3.8)\}=0\)
```

Optimal policy $=$ best action taken in each state in the last step:
$\pi(g)=$ ignore
$\pi(d)=$ maintain
$\pi(b)=$ ignore

COMP4418 17s2 • Week 12 - Sample Solutions to Class Exercises Decision Making

1. (Monty Hall Game as Markov Decision Process, POMDP)

Only show one of three actions in S_{0} - the other two are symmetric

S_{0}	a_{0}	$P\left(S_{0}, a_{0}, S_{1}\right)$	S_{1}	a_{1}	$P\left(S_{1}, a_{1}, S_{2}\right)$	S_{2}	a_{2}	$P\left(S_{2}, a_{2}, S_{3}\right)$	S_{3}	$u\left(S_{2}, a_{2}\right)$
()	choose(2)	$1 / 3$	$(2,1)$	noop	1	$(2,1,3)$	noop	1	$(2,1,3)$	0
							switch	1	$(2,2,3)$	100
$)$	choose(2)	$1 / 3$	$(2,2)$	noop	$1 / 2$	$(2,2,1)$	noop	1	$(2,2,1)$	100
								switch	1	$(3,2,1)$
					$1 / 2$	$(2,2,3)$	noop	1	$(2,2,3)$	100
							switch	1	$(1,2,3)$	0
()	choose(2)	$1 / 3$	$(2,3)$	noop	1	$(2,3,1)$	noop	1	$(2,3,1)$	0
						switch	1	$(3,3,1)$	100	

Like colours in a column indicate states with identical observations. The agent cannot distinguish these states from each other. Some probabilities from the belief states over S_{0}, S_{1} and S_{2} :
$P\left(S_{0}=()\right)=1.0$
$P\left(S_{1}=(2,1) \mid a_{0}=\operatorname{choose}(2)\right)=P\left(S_{1}=(2,2) \mid a_{0}=\operatorname{choose}(2)\right)=P\left(S_{1}=(2,3) \mid a_{0}=\operatorname{choose}(2)\right)=\frac{1}{3}$
$P\left(S_{2}=(2,1,3) \mid a_{0}=\operatorname{choose}(2), a_{1}=\right.$ noop, $o_{1}=$ door 3 opened $)=(1 / 3) /(1 / 3+1 / 3 * 1 / 2)=2 / 3$
$P\left(S_{2}=(2,2,1) \mid a_{0}=\right.$ choose(2), $a_{1}=$ noop, $o_{1}=$ door 1 opened $)=(1 / 3 * 1 / 2) /(1 / 3 * 1 / 2+1 / 3)=1 / 3$
$P\left(S_{2}=(2,2,3) \mid a_{0}=\right.$ choose $(2), a_{1}=$ noop, $o_{1}=$ door 3 opened $)=(1 / 3 * 1 / 2) /(1 / 3+1 / 3 * 1 / 2)=1 / 3$
$P\left(S_{2}=(2,3,1) \mid a_{0}=\operatorname{choose}(2), a_{1}=\right.$ noop, $o_{1}=$ door 1 opened $)=(1 / 3) /(1 / 3 * 1 / 2+1 / 3)=2 / 3$

It follows that the optimal policy is: any action in $b\left(S_{0}\right)$, noop in $b\left(S_{1}\right)$, switch in $b\left(S_{2}\right)$. The expected value is $(1 / 3) * 0+(2 / 3) * 100=66.667$

