
COMP4418 17s2 • Week 12 • Exercises

Decision Making

1. (Markov Decision Process)
Let g =̂ “good shape”, d =̂ “deteriorating” and b =̂ “broken.”

Consider a discount factor of δ = 0.9.

Starting with v0(g) = 0, v0(d) = 0 and v0(b) = 0, apply three steps of the value iteration algorithm
towards computing the optimal policy for the MDP below.

What does the algorithm suggest as the optimal policy at this point?
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Decision Making

1. (Markov Decision Process)

vi+1(g) = max{u(g, ignore) + 0.9 ·
∑

s′ P (g, ignore, s
′) · vi(s′),

u(g,maintain) + 0.9 ·
∑

s′ P (g,maintain, s′) · vi(s′)}
vi+1(d) = max{u(d, ignore) + 0.9 ·

∑
s′ P (d, ignore, s

′) · vi(s′),
u(d,maintain) + 0.9 ·

∑
s′ P (d,maintain, s′) · vi(s′)}

vi+1(b) = max{u(b, ignore) + 0.9 ·
∑

s′ P (b, ignore, s
′) · vi(s′),

u(b,maintain) + 0.9 ·
∑

s′ P (b,maintain, s′) · vi(s′)}
Hence, ;

v1(g) = max{2; 1} = 2
v1(d) = max{2; 1} = 2
v1(b) = max{0; −1} = 0

v2(g) = max{2 + 0.9 · (0.5 · 2 + 0.5 · 2); 1 + 0.9 · (1 · 2)} = 3.8
v2(d) = max{2 + 0.9 · (0.5 · 2 + 0.5 · 0); 1 + 0.9 · (0.9 · 2 + 0.1 · 2)} = 2.9
v2(b) = max{0 + 0.9 · (1 · 0); −1 + 0.9 · (0.8 · 0 + 0.2 · 2)} = 0

v3(g) = max{2 + 0.9 · (0.5 · 3.8 + 0.5 · 2.9); 1 + 0.9 · (1 · 3.8)} = 5.015
v3(d) = max{2 + 0.9 · (0.5 · 2.9 + 0.5 · 0); 1 + 0.9 · (0.9 · 3.8 + 0.1 · 2.9)} = 4.339
v3(b) = max{0 + 0.9 · (1 · 0); −1 + 0.9 · (0.8 · 0 + 0.2 · 3.8)} = 0

Optimal policy = best action taken in each state in the last step:

π(g) = ignore
π(d) = maintain
π(b) = ignore
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1. (Monty Hall Game as Markov Decision Process, POMDP)

Only show one of three actions in S0 – the other two are symmetric

S0 a0 P (S0,a0,S1) S1 a1 P (S1,a1,S2) S2 a2 P (S2,a2,S3) S3 u(S2,a2)

() choose(2) 1/3 (2, 1) noop 1 (2, 1, 3) noop 1 (2, 1, 3) 0
switch 1 (2, 2, 3) 100

() choose(2) 1/3 (2, 2) noop 1/2 (2, 2, 1) noop 1 (2, 2, 1) 100
switch 1 (3, 2, 1) 0

1/2 (2, 2, 3) noop 1 (2, 2, 3) 100
switch 1 (1, 2, 3) 0

() choose(2) 1/3 (2, 3) noop 1 (2, 3, 1) noop 1 (2, 3, 1) 0
switch 1 (3, 3, 1) 100

Like colours in a column indicate states with identical observations. The agent cannot distinguish these
states from each other. Some probabilities from the belief states over S0, S1 and S2:

P (S0 = ()) = 1.0

P (S1 = (2, 1) | a0 = choose(2)) = P (S1 = (2, 2) | a0 = choose(2)) = P (S1 = (2, 3) | a0 = choose(2)) = 1
3

P (S2 = (2, 1, 3) | a0 = choose(2), a1 = noop, o1 = door 3 opened) = (1/3)/(1/3 + 1/3 ∗ 1/2) = 2/3
P (S2 = (2, 2, 1) | a0 = choose(2), a1 = noop, o1 = door 1 opened) = (1/3 ∗ 1/2)/(1/3 ∗ 1/2 + 1/3) = 1/3
P (S2 = (2, 2, 3) | a0 = choose(2), a1 = noop, o1 = door 3 opened) = (1/3 ∗ 1/2)/(1/3 + 1/3 ∗ 1/2) = 1/3
P (S2 = (2, 3, 1) | a0 = choose(2), a1 = noop, o1 = door 1 opened) = (1/3)/(1/3 ∗ 1/2 + 1/3) = 2/3

It follows that the optimal policy is: any action in b(S0), noop in b(S1), switch in b(S2). The expected
value is (1/3)*0+(2/3)*100 = 66.667


