GSOE9210 Engineering Decisions

Victor Jauregui

vicj@cse.unsw.edu.au
www.cse.unsw.edu.au/~gs9210

Victor Jauregui

Engineering Decisions

Bayes decisions

- 1 Decisions under risk
- 2 Bayes decisions

Victor Jauregui

Engineering Decisions

Decisions under risk

Decision problem classes

Decision problems can be classified based on an agent's epistemic state:

- Decisions under certainty: the agent knows the actual state
- Decisions under *uncertainty*:
 - Decisions under *ignorance* (full uncertainty): the agent believes multiple states/outcomes are possible; likelihoods unknown
 - Decisions under *risk*: the agent believes multiple states/outcomes are possible; likelihood information available

River example

Example (River logistics)

Alice's warehouse is located at X on a river that flows down-stream from C to A. She delivers goods to a client at C via motor boats. On some days a (free) goods ferry travels up the river, stopping at A then B and C, but not at X.

The fuel required (litres) to reach C from each starting point:

Alice wants to minimise fuel consumption (in litres).

Victor Jauregui Engineering Decisions

Decisions under risk

Decisions under incomplete information: risk

Example (Ferry likelihood)

In the river logistics problem, suppose Alice has received an order requiring a package to be delivered every day for the next eight days. Her records show that out of the last 100 days, the ferry was operating on 75.

- Additional information (Alice's records) can be used to estimate likelihood of ferry being operational on any given day
- Maximum likelihood estimation assumption: ferry operates in three out of every four days
- Is the *Maximin* strategy (B) still the most rational choice?

River example

Alice considers three possible ways to get to C (from starting point X):

A : via A, by floating down the river

B: via B, by travelling up-stream to B

C: by travelling all the way to C

Outcomes are measured in *litres left* in a four-litre tank.

Exercise

Let $w:\Omega\to\mathbb{R}$ denote fuel consumption in litres. What transformation $f:\mathbb{R}\to\mathbb{R}$ is responsible for the values $v:\Omega\to\mathbb{R}$ in the decision table?

Victor Jauregui

Engineering Decisions

Decisions under risk

Single decision; multiple trials

• Fuel savings for delivering one package per day over eight days when ferry operates on six of those days:

where, e.g., $24 = 6 \times 4 + 2 \times 0$, $20 = 6 \times 3 + 2 \times 1$, etc.

- Can we assume the ferry will operate in six of the eight days?
- Maximin chooses based on least favourable state (\overline{f})
- Given information about likelihood of f, is Maximin suitable?

Single decision; multiple trials

Alternatively:

- In how many of the next eight days will ferry operate: Six? Five? Eight? None?
- Assume long sequence of days . . . or *maximum likelihood estimate* (six out of eight)
- Proportion of days in which ferry operational: $p = \frac{6}{8} = \frac{3}{4}$

• Is p probability that ferry will operate on any given day?

Victor Jauregui En

Engineering Decisions

Decisions under risk

Frequency interpretation of probability

Outcomes:

$$\underbrace{t,h,h,t,t,h,t}_{n},h,t,h,\dots$$

Definition (Frequency interpretation of probability)

The *probability* of an event, E, in an experiment of chance, is the limit of the average occurrences of E over any sequence of indefinitely many trials; *i.e.*,

$$P(E) = \lim_{n \to \infty} \frac{n_E}{n}$$

where n_E is the number of occurrences of event E in the first n trials.

- *e.g.*, For event $H: \frac{0}{1}, \frac{1}{2}, \frac{2}{3}, \frac{2}{4}, \frac{2}{5}, \frac{3}{6}, \frac{3}{7}, \dots, \frac{n_H}{n}, \dots$
- What is P(H) for this experiment?

Expected values

Definition (Expected value)

The expected value of a random variable $X: \Omega \to \mathbb{R}$ with probability distribution $P: \Omega \to \mathbb{R}$ is given by:

$$E(X) = \sum_{\omega \in \Omega} P(\omega) X(\omega)$$

Definition

The event corresponding to value $x \in \mathbb{R}$, denoted X_x , is defined as:

$$X_x = X^{-1}[x] = \{ \omega \in \Omega \mid X(\omega) = x \}$$

More generally, for $A \subseteq \mathbb{R}$:

$$X_A = X^{-1}[A] = \{ \omega \in \Omega \mid X(\omega) \in A \}$$

Victor Jauregui Engineering Decisions

Decisions under risk

Expected values

For a random variable (real-valued function from Ω to $\mathbb R$) X:

- ullet E(X) is also called the limiting (or long run) average of X
- E(X) may not be any actual value in ran X
- ullet E(X) is a measure of the 'centre', or *centroid*, of the values of the outcomes
- Natural correspondence with the 'centre of gravity/mass' of a distribution of point masses on a line, where $P(X=x_i)$ corresponds to the proportion of the total mass positioned at x_i

Multiple random trials

- In this situation there are multiple trials (days) of some random process: 100 days
- In each trial (day) different states may occur: ferry (f) or no ferry (f)
- Information exists about the 'likelihood' of occurrence of states: 75% ferry to 25% no ferry
- Maximin assumes worst case for each action even when the worst case (no ferry) is unlikely; i.e., it ignores likelihood information
- Over 100 working days, Alice's total value is greater via A than B
- A decision rule which takes likelihood information into account would be preferable

Victor Jauregui Engineering Decisions

Decisions under risk

Probabilistic lotteries

Definition (Probabilistic lottery)

A probabilistic lottery over a finite set of outcomes, or prizes, Ω , is a pair $\ell = (\Omega, P)$, where $P : \Omega \to \mathbb{R}$ is a probability function. The lottery ℓ is written:

$$\ell = [p_1 : c_1 | p_2 : c_2 | \dots | p_n : c_n]$$

where for each $s_i \in \mathcal{S} \subseteq \mathbb{P}(\Omega)$, $p_i = P(s_i) = P(c_i)$.

Example (To C via A)

Alice's decision to travel via A corresponds to:

$$\ell_{\mathsf{A}} = \left[\frac{3}{4} : 4|\frac{1}{4} : 0\right]$$

where outcomes have been replaced by their values.

Value of a lottery

Definition (Value of a lottery)

The value of a probabilistic lottery (Ω,P,v) is the expected value over its outcomes:

$$V_v(\ell) = E(v) = \sum_{\omega \in \Omega} P(\omega)v(\omega)$$

• For strategy A:

$$V(\ell_{\mathsf{A}}) = \frac{3}{4}(4) + \frac{1}{4}(0) = 3 + 0 = 3$$

- ullet Note: not value of any outcome of strategy A: 4,0
- \bullet Frequency interpretation: $V(\ell_{\mathsf{A}})$ is the average value of A over many days

Victor Jauregui Engineering Decisions

Bayes decisions

Outline

- Decisions under risk
- 2 Bayes decisions

Bayes decisions

Under risk, each strategy in a decision problem corresponds to a probabilistic lottery.

Definition (Bayes value)

Given a probability distribution over states, the *Bayes value*, V_B , of a strategy is the expected value of its outcomes.

Definition (Bayes strategy)

A Bayes strategy is a strategy with maximal Bayes value.

Definition (Bayes decision rule)

The Bayes decision rule is the rule which selects all the Bayes strategies.

Victor Jauregui

Engineering Decisions

Bayes decisions

Bayes strategies

For the river problem, assume the proportion of days in which the ferry operates is $p_f = p$:

$$\begin{array}{c|cccc} p & 1-p \\ \hline & f & \overline{f} & V_B \\ \hline \mathsf{A} & 4 & 0 & 4p \\ \mathsf{B} & 3 & 1 & 2p+1 \end{array}$$

Bayes values for each strategy plotted for all values of $p \in [0, 1]$.

Exercise

For what values of p will the Bayes decision rule prefer A to B?

Victor Jauregui

Engineering Decisions

Indifference curves: Maximin

For the pure actions below:

Consider curves of all points representing strategies with same *Maximin* value; *i.e.*, *Maximin indifference curves*.

Victor Jauregui

Engineering Decisions

Bayes decisions

Indifference curves: Bayes

Bayes decision rule indifference curves are linear:

Indifference curves:

$$V_B(a) = pv_1 + (1-p)v_2 = u$$

- In gradient-intercept form, $v_2=\frac{u}{1-p}-\frac{p}{1-p}v_1$, where $m=-\frac{p}{1-p}$; e.g., for $p=\frac{3}{4}$, $m=-\frac{3}{4}/\frac{1}{4}=-\frac{3}{1}$
- Because $v_2 \propto u$; i.e., 'higher' lines receive greater Bayes values

Indifference curves: Bayes

In general, for two actions:

$$egin{array}{|c|c|c|c|c|} & p & 1-p \\ \hline & s_1 & s_2 \\ \hline A & a_1 & a_2 \\ B & b_1 & b_2 \\ \hline \end{array}$$

$$p = \frac{\Delta y}{\Delta x + \Delta y}$$
$$= \frac{m}{m - 1}$$

where m is the gradient of line AB.

For example: if A is (1,3) and B is (2,1) then:

$$p = \frac{3-1}{(2-1)+(3-1)}$$
$$= \frac{2}{1+2} = \frac{2}{3}$$

Victor Jauregui

Engineering Decisions

Bayes decisions

Indifference classes and Bayes decisions

Exercises

- Prove the expression for *p*
- For the river problem, what is the slope of the line joining the two actions?
- For what probability are the two actions of equal Bayes value?
- What is the Bayes value associated with this line?
- Repeat the above exercises for regret

Bayes strategies

For the pure actions below with $P(s_1) = p$:

Slope of BC:
$$m = \frac{5-1}{3-5} = -2$$
.
 $\therefore p = \frac{2}{2+1} = \frac{2}{3}$.

Note: $p \propto -m$.

Victor Jauregui

Engineering Decisions

Bayes decisions

Bayes strategies

For the pure actions below with $P(s_1)=p$:

For $p = \frac{2}{3}$, the value of the *Bayes* action(s) is least.

Definition

The *least favourable probability distribution* on the states/outcomes is the probability distribution for which *Bayes* strategies have minimal values.

Bayes solutions

For the pure actions below with $P(s_1) = p$:

	s_1	s_2	V_B
Α	1	5	$\overline{5-4p}$
В	4	1	1+3p
C	3	4	4-p

Slope of BC: $m = \frac{4-1}{3-4} = -3$.

$$\therefore p = \frac{3}{4}.$$

 $\therefore p = \frac{3}{4}.$ Slope of AC: $m = \frac{-1}{2}.$ $\therefore p = \frac{1}{3}.$

$$\therefore p = \frac{1}{3}.$$

Victor Jauregui

Engineering Decisions

Bayes decisions

Bayes strategies

- Note that the *Maximin* action is a *Bayes* action for $p=rac{3}{4}$
- \bullet Note that the internal mixed strategy $a \sim 0.5 \mathrm{A} 0.3 \mathrm{B} 0.2 \mathrm{C}$ is not <code>Bayes</code>

Bayes summary

Theorem

Results about Bayes decision rule:

- Mixing can improve upon the Maximin value of pure strategies, but it does not improve upon the Bayes value of pure strategies
- Bayes strategies are invariant/preserved under regret; i.e., the same strategy is chosen under regret as otherwise

Exercise

Prove the theorems above.

Victor Jauregui

Engineering Decisions

Bayes decisions

Admissible mixed strategies

	s_1	s_2
Α	0	4
В	3	1
C	2	3
D	1	2

Exercises

- Which mixed strategies above are admissible?
- Are Maximin mixed strategies always admissible?
- Are Bayes mixed strategies always admissible?
- Are *Maximin* mixed strategies always *Bayes* for some *p*?
- Are admissible mixed strategies *Bayes* for some *p*?

Bayes summary

- Partial information situations (risk)
- Information can affect degree of likelihood/belief (Bayesian probability)
- Bayes rule more appropriate when partial information present
- Bayes values, Bayes decision rule, Bayes strategies
- Graphical representation of Bayes values
- Bayes indifference curves

Victor Jauregui Engineering Decisions