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Decisions under risk

Decision problem classes

Decision problems can be classified based on an agent’s epistemic state:

Decisions under certainty: the agent knows the actual state

Decisions under uncertainty:

Decisions under ignorance (full uncertainty): the agent believes
multiple states/outcomes are possible; likelihoods unknown
Decisions under risk: the agent believes multiple states/outcomes are
possible; likelihood information available
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Decisions under risk

River example

X
A B C

Example (River logistics)

Alice’s warehouse is located at X on a river that flows down-stream from C
to A. She delivers goods to a client at C via motor boats. On some days a
(free) goods ferry travels up the river, stopping at A then B and C, but
not at X.

The fuel required (litres) to reach C from each starting point:

A X B C

To C from: 4 3 2 0
Alice wants to minimise fuel consumption (in litres).
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Decisions under incomplete information: risk

Example (Ferry likelihood)

In the river logistics problem, suppose Alice has received an order requiring
a package to be delivered every day for the next eight days. Her records
show that out of the last 100 days, the ferry was operating on 75.

Additional information (Alice’s records) can be used to estimate
likelihood of ferry being operational on any given day

Maximum likelihood estimation assumption: ferry operates in three
out of every four days

Is the Maximin strategy (B) still the most rational choice?

Victor Jauregui Engineering Decisions



Decisions under risk

River example

X
A B C

f f

A 4 0

B 3 1

C 1 1

f

4

3

1

f f

Alice considers three possible ways to get to C (from starting point X):

A : via A, by floating down the river

B : via B, by travelling up-stream to B

C : by travelling all the way to C

Outcomes are measured in litres left in a four-litre tank.

Exercise

Let w : Ω→ R denote fuel consumption in litres. What transformation
f : R→ R is responsible for the values v : Ω→ R in the decision table?
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Single decision; multiple trials

Fuel savings for delivering one package per day over eight days when
ferry operates on six of those days:

f f

A 24 0

B 18 2

f

24

18

f f
∑
24

20

Avg

3

2.5

min

0

2

where, e.g., 24 = 6× 4 + 2× 0, 20 = 6× 3 + 2× 1, etc.

Can we assume the ferry will operate in six of the eight days?

Maximin chooses based on least favourable state (f)

Given information about likelihood of f , is Maximin suitable?
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Decisions under risk

Single decision; multiple trials

Alternatively:

In how many of the next eight days will ferry operate: Six? Five?
Eight? None?

Assume long sequence of days . . . or maximum likelihood estimate
(six out of eight)

Proportion of days in which ferry operational: p = 6
8 = 3

4

f f

A 4 0

B 3 1

f

4

3

f f

3
4

1
4

E

3

2.5

min

0

1

Is p probability that ferry will operate on any given day?

Victor Jauregui Engineering Decisions

Decisions under risk

Frequency interpretation of probability

Outcomes:

t, h, h, t, t, h, t︸ ︷︷ ︸
n

, h, t, h, . . .

Definition (Frequency interpretation of probability)

The probability of an event, E, in an experiment of chance, is the limit of
the average occurrences of E over any sequence of indefinitely many trials;
i.e.,

P (E) = lim
n→∞

nE

n

where nE is the number of occurrences of event E in the first n trials.

e.g., For event H: 0
1 ,

1
2 ,

2
3 ,

2
4 ,

2
5 ,

3
6 ,

3
7 , . . . ,

nH
n , . . .

What is P (H) for this experiment?
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Decisions under risk

Expected values

Definition (Expected value)

The expected value of a random variable X : Ω→ R with probability
distribution P : Ω→ R is given by:

E(X) =
∑
ω∈Ω

P (ω)X(ω)

Definition

The event corresponding to value x ∈ R, denoted Xx, is defined as:

Xx = X−1[x] = {ω ∈ Ω | X(ω) = x}

More generally, for A ⊆ R:

XA = X−1[A] = {ω ∈ Ω | X(ω) ∈ A}
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Expected values

For a random variable (real-valued function from Ω to R) X:

E(X) is also called the limiting (or long run) average of X

E(X) may not be any actual value in ranX

E(X) is a measure of the ‘centre’, or centroid, of the values of the
outcomes

Natural correspondence with the ‘centre of gravity/mass’ of a
distribution of point masses on a line, where P (X = xi) corresponds
to the proportion of the total mass positioned at xi
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Decisions under risk

Multiple random trials

In this situation there are multiple trials (days) of some random
process: 100 days

In each trial (day) different states may occur: ferry (f) or no ferry (f)

Information exists about the ‘likelihood’ of occurrence of states:
75% ferry to 25% no ferry

Maximin assumes worst case for each action even when the worst
case (no ferry) is unlikely; i.e., it ignores likelihood information

Over 100 working days, Alice’s total value is greater via A than B

A decision rule which takes likelihood information into account would
be preferable
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Probabilistic lotteries

Definition (Probabilistic lottery)

A probabilistic lottery over a finite set of outcomes, or prizes, Ω, is a pair
` = (Ω, P ), where P : Ω→ R is a probability function. The lottery ` is
written:

` = [p1 : c1|p2 : c2| . . . |pn : cn]

where for each si ∈ S ⊆ P(Ω), pi = P (si) = P (ci).

Example (To C via A)

Alice’s decision to travel via A corresponds to:

`A = [3
4 : 4|14 : 0]

where outcomes have been replaced by their values. 0
1
4 : f

43
4 : f

Victor Jauregui Engineering Decisions



Decisions under risk

Value of a lottery

Definition (Value of a lottery)

The value of a probabilistic lottery (Ω, P, v) is the expected value over its
outcomes:

Vv(`) = E(v) =
∑
ω∈Ω

P (ω)v(ω)

For strategy A:

V (`A) = 3
4(4) + 1

4(0) = 3 + 0 = 3

Note: not value of any outcome of strategy A: 4, 0

Frequency interpretation: V (`A) is the average value of A over many
days

Victor Jauregui Engineering Decisions

Bayes decisions

Outline

1 Decisions under risk

2 Bayes decisions

Victor Jauregui Engineering Decisions



Bayes decisions

Bayes decisions

Under risk, each strategy in a decision problem corresponds to a
probabilistic lottery.

Definition (Bayes value)

Given a probability distribution over states, the Bayes value, VB, of a
strategy is the expected value of its outcomes.

Definition (Bayes strategy)

A Bayes strategy is a strategy with maximal Bayes value.

Definition (Bayes decision rule)

The Bayes decision rule is the rule which selects all the Bayes strategies.
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Bayes strategies

For the river problem, assume the
proportion of days in which the
ferry operates is pf = p:

f f

A 4 0

B 3 1

f

4

3

f f

p 1− p

VB

4p

2p + 1

Bayes values for each strategy
plotted for all values of p ∈ [0, 1].

Exercise

For what values of p will the
Bayes decision rule prefer A to B?

VB

0

1

2

3

4

5

p1
4

1
2

3
4

0 1

A

B
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Bayes decisions

Indifference curves: Maximin

For the pure actions below:

s1 s2

A 2 3

B 4 0

C 3 3

D 5 2

E 3 5

s1

2

4

3

5

3

s1 s2

Consider curves of all points
representing strategies with
same Maximin value; i.e.,
Maximin indifference curves.

s2

0

1

2

3

4

5

s10 1 2 3 4 5

A

I(A)

DC

E

2

3
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Indifference curves: Bayes

Bayes decision rule indifference curves are linear:

p 1− p

f f VB

A 4 0 4p

B 3 1 2p + 1

a v1 v2 pv1 + (1− p)v2

Indifference curves:
VB(a) = pv1 + (1− p)v2 = u

f

0

1

2

3

f0 1 2 3 4

A

B

p
=

34

321
2

p = 1
4

In gradient-intercept form, v2 = u
1−p −

p
1−pv1, where m = − p

1−p ; e.g.,

for p = 3
4 , m = −3

4/
1
4 = −3

1

Because v2 ∝ u; i.e., ‘higher’ lines receive greater Bayes values
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Bayes decisions

Indifference curves: Bayes

In general, for two actions:

p 1− p

s1 s2

A a1 a2

B b1 b2

f

0

1

2

3

f0 1 2 3

A

B
∆y

∆x

∆y = |a2 − b2|
∆x = |a1 − b1|p

=
−

∆
y

∆
x
+

∆
y

p =
∆y

∆x + ∆y

=
m

m− 1

where m is the gradient of line AB.

For example: if A is (1, 3) and B is
(2, 1) then:

p = 3−1
(2−1)+(3−1)

= 2
1+2 = 2

3
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Indifference classes and Bayes decisions

Exercises

Prove the expression for p

For the river problem, what is the slope of the line joining the two
actions?

For what probability are the two actions of equal Bayes value?

What is the Bayes value associated with this line?

Repeat the above exercises for regret
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Bayes strategies

For the pure actions below with
P (s1) = p:

s1 s2 VB

A 2 3 3− p

B 5 1 1 + 4p

C 3 5 5− 2p

Slope of BC: m = 5−1
3−5 = −2.

∴ p = 2
2+1 = 2

3 .

Note: p ∝ −m.

s2

0

1

2

3

4

5

s10 1 2 3 4 5

A

B

C
p

=
23
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Bayes strategies

For the pure actions below with
P (s1) = p:

s1 s2 VB

A 2 3 3− p

B 5 1 1 + 4p

C 3 5 5− 2p

For p = 2
3 , the value of the Bayes

action(s) is least.

VB

0

1

2

3

4

5

p1
4

1
2

3
4

0 1

A

BC

2
3

Definition

The least favourable probability distribution on the states/outcomes is the
probability distribution for which Bayes strategies have minimal values.
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Bayes decisions

Bayes solutions

For the pure actions below with
P (s1) = p:

s1 s2 VB

A 1 5 5− 4p

B 4 1 1 + 3p

C 3 4 4− p

Slope of BC: m = 4−1
3−4 = −3.

∴ p = 3
4 .

Slope of AC: m = −1
2 .

∴ p = 1
3 .

s2

0

1

2

3

4

5

s10 1 2 3 4 5

A

B

C

Mp
=

34

p = 1
3

p
=

1
2
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Bayes strategies

s2

0

1

2

3

4

5

s10 1 2 3 4 5

A

B

C

M

p
=

34

p = 1
3

p
=

1
2

a

VB

0

1

2

3

4

5

p1
4

1
2

3
4

0 1

A

B
C

1
3

M

a

Note that the Maximin action is a Bayes action for p = 3
4

Note that the internal mixed strategy a ∼ 0.5A0.3B0.2C is not Bayes
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Bayes decisions

Bayes summary

Theorem

Results about Bayes decision rule:

Mixing can improve upon the Maximin value of pure strategies, but it
does not improve upon the Bayes value of pure strategies

Bayes strategies are invariant/preserved under regret; i.e., the same
strategy is chosen under regret as otherwise

Exercise

Prove the theorems above.
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Admissible mixed strategies

s1 s2

A 0 4

B 3 1

C 2 3

D 1 2

s1

0

3

2

1

s1 s2

s2

0

1

2

3

4

s10 1 2 3 4

A

B

C

D M

Exercises

Which mixed strategies above are admissible?

Are Maximin mixed strategies always admissible?

Are Bayes mixed strategies always admissible?

Are Maximin mixed strategies always Bayes for some p?

Are admissible mixed strategies Bayes for some p?
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Bayes summary

Partial information situations (risk)

Information can affect degree of likelihood/belief (Bayesian
probability)

Bayes rule more appropriate when partial information present

Bayes values, Bayes decision rule, Bayes strategies

Graphical representation of Bayes values

Bayes indifference curves
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