Declarative / procedural

Theorem proving (like resolution) is a general domain-independent method of reasoning

Does not require the user to know how knowledge will be used

- will try all logically permissible uses

Sometimes have ideas about how to use knowledge, how to search for derivations

- do not want to use arbitrary or stupid order

Want to communicate to ATP procedure guidance based on properties of domain

- perhaps specific method to use
- perhaps merely method to avoid

Example: directional connectives

In general: control of reasoning

DB + rules

Can often separate (Horn) clauses into two components:

- database of facts
 - basic facts of the domain
 - usually ground atomic wffs
- collection of rules
 - extend vocabulary in terms of basic facts
 - usually universally quantified conditionals

Both retrieved by unification matching

Example:

MotherOf(jane,billy)
FatherOf(john,billy)
FatherOf(sam,john)
...

ParentOf(x,y) ← MotherOf(x,y)
ParentOf(x,y) ← FatherOf(x,y)
ChildOf(x,y) ← ParentOf(y,x)
...

Control Issue: how to use rules
Rule formulation

Consider AncestorOf in terms of ParentOf

Three logically equivalent versions:

1. AncestorOf(x,y) ⇐ ParentOf(x,y)
 AncestorOf(x,y) ⇐ ParentOf(x,z) ∧ AncestorOf(z,y)

2. AncestorOf(x,y) ⇐ ParentOf(x,y)
 AncestorOf(x,y) ⇐ ParentOf(z,y) ∧ AncestorOf(x,z)

3. AncestorOf(x,y) ⇐ ParentOf(x,y)
 AncestorOf(x,y) ⇐ AncestorOf(x,z) ∧ AncestorOf(z,y)

Back-chaining goal of AncestorOf(sam,sue) will ultimately reduce to set of ParentOf(–,–) goals

1. get ParentOf(sam,z): find child of Sam
 searches downward from Sam

2. get ParentOf(z,sue): find parent of Sue
 searches upward from Sue

3. get ParentOf(–,–): find parent relations
 searches in both directions

Search strategies are not equivalent
if more than 2 children per parent, (2) is best

Algorithm design

Example: Fibonacci numbers

1, 1, 2, 3, 5, 8, 13, 21, ...

Version 1:

Fibo(0, 1)
Fibo(1, 1)
Fibo(s(s(n)), x) ⇐ Fibo(n, y) ∧ Fibo(s(n), z)
∧ Plus(y, z, x)

Requires exponential number of Plus subgoals

Version 2:

Fibo(n, x) ⇐ F(n, 1, 0, x)
F(0, c, p, c)
F(s(n), c, p, x) ⇐ Plus(p, c, s) ∧ F(n, x, c, x)

Requires only linear number of Plus subgoals
Ordering goals

Example:

AmericanCousinOf(x,y) ⇐
American(x) ∧ CousinOf(x,y)

In back-chaining, can try to solve either subgoal first

Not much difference for

AmericanCousinOf(fred, sally)

Big difference for

AmericanCousinOf(x, sally)

1. find an American and then check to see if she is a cousin of Sally
2. find a cousin of Sally and then check to see if she is an American

So want to be able to order goals

better to generate cousins and test for American

In Prolog: order clauses, and literals in them

Notation: \(G \leftarrow G_1, G_2, ..., G_n \) stands for
\(G \leftarrow G_1 \land G_2 \land ... \land G_n \)

but goals are attempted in presented order

Commit

Need to allow for backtracking in goals

AmericanCousinOf(x,y) :-
CousinOf(x,y), American(x)

for goal AmericanCousinOf(x, sally), may need to try American(x) for various values of x

But sometimes, given clause of the form

\(G \leftarrow T, S \)

goal \(T \) is needed only as a test for the applicability of subgoal \(S \)

In other words: if \(T \) succeeds, commit to \(S \) as the only way of achieving goal \(G \).

so if \(S \) fails, then \(G \) is considered to have failed

– do not look for other ways of solving \(T \)
– do not look for other clauses with \(G \) as head

In Prolog: use of cut symbol

Notation: \(G \leftarrow T_1, T_2, ..., T_m, !, G_1, G_2, ..., G_n \)

attempt goals in order, but if all \(T_i \) succeed, then commit to \(G_i \)
If-then-else

Sometimes inconvenient to separate clauses in terms of unification, as in

\[G(\text{zero}, -) : \textit{method 1} \]
\[G(\text{succ}(n), -) : \textit{method 2} \]

For example, might not have distinct cases:

\[\text{NumberOfParentsOf(adam, 0)} \]
\[\text{NumberOfParentsOf(eve, 0)} \]
\[\text{NumberOfParentsOf(x, 2)} \]

want: 2 for everyone except Adam and Eve

Or cases may split based on computed property:

\[\text{Expt}(a, n, x) \leftarrow \text{Even}(n), (what \ to \ do \ when \ n \ is \ even) \]
\[\text{Expt}(a, n, x) \leftarrow \text{Even}(s(n)), (what \ to \ do \ when \ n \ is \ odd) \]

want: check for even numbers only once

Solution: use \! to do if-then-else

\[G : P, \!, Q. \]
\[G : R. \]

To achieve \(G \): if \(P \) then use \(Q \) else use \(R \)

\[\text{Expt}(a, n, x) \leftarrow \text{Even}(n), \!, (for \ even \ n) \]
\[\text{Expt}(a, n, x) \leftarrow (for \ odd \ n) \]
\[\text{NumberOfParentsOf(adam, 0)} : \! \]
\[\text{NumberOfParentsOf(eve, 0)} : \! \]
\[\text{NumberOfParentsOf(x, 2)} \]

Controlling backtracking

Consider a goal

1. AncestorOf(jane, billy), Male(jane)
2. ParentOf(jane, billy), Male(jane)
3. Male(jane)
4. ParentOf(\(z \), billy), AncestorOf(jane, \(z \)), Male(jane)

FAILS

Eventually FAILS

So goal should be:

\[\text{AncestorOf(jane, billy)}, \!, \text{Male(jane)} \]

Similarly:

\[\text{Member}(x, l) \leftarrow \text{FirstElement}(x, l) \]
\[\text{Member}(x, l) \leftarrow \text{Rest}(l, l') \land \text{Member}(x, l') \]

If only to be used for testing, want

\[\text{Member}(x, l) : \leftarrow \text{FirstElement}(x, l), \! \]

On failure, do not try to find another \(x \) later in rest of list
Negation as failure

Procedurally: can distinguish between
- can solve goal \(\neg G \)
- cannot solve \(G \)

Use \texttt{not}(G) to mean goal that succeeds if \(G \) fails, and
fails if \(G \) succeeds

Roughly
\[
\text{not}(G) :\!- G, !, \text{fail} \quad /* \text{fail if } G \text{ succeeds } */
\]
\[
\text{not}(G) \quad /* \text{otherwise succeed } */
\]

Only terminates when failure is finite

no more resolvents vs. infinite branch

Useful when DB + rules is complete

\[\text{NoParents}(x) :\!- \text{not}(\text{ParentOf}(z,x)) \]

or when method already exists for complement

\[\text{Composite}(n) :\!- \text{not}(\text{PrimeNum}(n)) \]

Declaratively: same reading as \(\neg \), but complications
with new variables in \(G \)

\[[\text{not}(\text{ParentOf}(z,x)) \Rightarrow \text{NoParents}(x)] \quad 4 \]

vs.
\[[\neg \text{ParentOf}(z,x) \Rightarrow \text{NoParents}(x)] \quad 8 \]

Dynamic DB

Sometimes useful to think of DB as a snapshot of the
world that can be changed dynamically
assertions, deletions

then useful to consider three procedural
interpretations for rules like

\[\text{ParentOf}(x,y) \iff \text{MotherOf}(x,y) \]

1. If-needed
 Whenever have a goal matching \(\text{ParentOf}(x,y) \), can solve it
 by solving \(\text{MotherOf}(x,y) \)
 ordinary back-chaining, as in Prolog

2. If-added
 Whenever something matching \(\text{MotherOf}(x,y) \) is added to the
 DB, also add \(\text{ParentOf}(x,y) \)
 forward-chaining

3. If-removed
 Whenever something matching \(\text{MotherOf}(x,y) \) is removed
 from the DB, also remove \(\text{ParentOf}(x,y) \)
 keeping track of dependencies in DB

Interpretations (2) and (3) suggest demons

procedures that monitor DB and fire when certain
conditions are met
The Planner language

Main ideas:

1. DB of facts
 - (Mother susan john)
 - (Person john)

2. If-needed, if-added, if-removed procedures consisting of
 - body: program to execute
 - pattern for invocation: (Mother x y)

3. Each program statement can succeed or fail
 - (goal p), (assert p), (erase p),
 - (and s ... s), statements with backtracking
 - (not s), negation as failure
 - (for-p s), do s for every way p succeeds
 - (finalize s), like cut
 - a lot more, including all of Lisp

Example:

(proc if-needed (cleartable)
 (for (on x table)
 (and (erase (on x table))
 (goal (putaway x)))))

(proc if-removed (on x y)
 (print x " is no longer on " y))

Shift from proving conditions to making conditions hold
(if only in DB)