
KR & R! ©  Brachman & Levesque  2005   Procedural Control       

Declarative / procedural

Theorem proving (like resolution) is a 
general domain-independent method of 
reasoning

Does not require the user to know how 
! knowledge will be used

! will try all logically permissible uses

Sometimes have ideas about how to use 
knowledge, how to search for derivations

! do not want to use arbitrary or stupid order

Want to communicate to ATP procedure 
guidance  based on properties of domain

• perhaps specific method to use
• perhaps merely method to avoid

Example: directional connectives

In general:  control of reasoning

KR & R! ©  Brachman & Levesque  2005   Procedural Control       

DB + rules

Can often separate (Horn) clauses into two 
components:

• database of facts
– basic facts of the domain
– usually ground atomic wffs

• collection of rules
– extend vocabulary in terms of basic facts
– usually universally quantified conditionals

Both retrieved by unification matching
Example:
! MotherOf(jane,billy)
! FatherOf(john,billy)
! FatherOf(sam, john)
! ...
! ParentOf(x,y)  ⇐  MotherOf(x,y)
! ParentOf(x,y)  ⇐  FatherOf(x,y)
! ChildOf(x,y)  ⇐  ParentOf(y,x)

! ...
Control Issue:   how to use rules



KR & R! ©  Brachman & Levesque  2005   Procedural Control       

Consider AncestorOf in terms of ParentOf

Back-chaining goal of AncestorOf(sam,sue) will 
ultimately reduce to set of ParentOf(–,–) goals

1.!get  ParentOf(sam,z):!! find child of Sam
! searches downward from Sam

2.!get  ParentOf(z,sue):! ! find parent of Sue
! searches upward from Sue

3.!get  ParentOf(–,–):! ! find parent relations
! searches in both directions

Search strategies are not equivalent
! if more than 2 children per parent, (2) is best

3.! AncestorOf(x,y)  ⇐   ParentOf(x,y)
! AncestorOf(x,y)  ⇐   AncestorOf(x,z)  ∧  AncestorOf(z,y)

2.! AncestorOf(x,y)  ⇐   ParentOf(x,y)
! AncestorOf(x,y)  ⇐   ParentOf(z,y)  ∧ AncestorOf(x,z)

1.! AncestorOf(x,y)  ⇐   ParentOf(x,y)
! AncestorOf(x,y)  ⇐   ParentOf(x,z)  ∧ AncestorOf(z,y)

Three logically equivalent versions:

Rule formulation

KR & R! ©  Brachman & Levesque  2005   Procedural Control       

Algorithm design

Example: Fibonacci numbers
! 1, 1, 2, 3, 5, 8, 13, 21, ...

Version 1:
! Fibo(0, 1)

! Fibo(1, 1)

! Fibo(s(s(n)), x)  ⇐  Fibo(n, y) ∧  Fibo(s(n), z)
! ∧  Plus(y, z, x)

Requires exponential number of Plus 
subgoals

Version 2:
! Fibo(n, x)  ⇐  F(n, 1, 0, x)

! F(0, c, p, c)

# F(s(n), c, p, x)  ⇐  Plus(p, c, s)  ∧  F(n, s, c, x)

Requires only linear number of Plus subgoals



KR & R! ©  Brachman & Levesque  2005   Procedural Control       

Ordering goals

Example:
! AmericanCousinOf(x,y)  ⇐  

# American(x)  ∧  CousinOf(x,y)

! In back-chaining, can try to solve either subgoal first

Not much difference for 
! AmericanCousinOf(fred, sally)

Big difference for
! AmericanCousinOf(x, sally)

1.!find an American and then check to see if she is 
a cousin of Sally

2.!find a cousin of Sally and then check to see if she 
is an American

So want to be able to order goals
! better to generate cousins and test for American

In Prolog:  order clauses, and literals in them
! Notation:  G  :-  G1, G2, ..., Gn    stands for 

                G  ⇐  G1 ∧ G2 ∧ ... ∧ Gn

but goals are attempted in presented order

KR & R! ©  Brachman & Levesque  2005   Procedural Control       

Commit

Need to allow for backtracking in goals
! AmericanCousinOf(x,y)  :-  

# # # # CousinOf(x,y),  
American(x) 

! for goal AmericanCousinOf(x,sally), may need to try 
American(x)  for various values of x

But sometimes, given clause of the form
! G  :-  T,  S 

goal T is needed only as a test for the applicability of 
subgoal S

In other words:  if T succeeds, commit to S as the only 
way of achieving goal G.

! so if S fails, then G is considered to have failed
– do not look for other ways of solving T
– do not look for other clauses with G as head

In Prolog:  use of cut symbol
! Notation:   G  :-  T1, T2, ..., Tm, !, G1, G2, ..., Gn 

! attempt goals in order, but if all Ti succeed, 
then commit to Gi



KR & R! ©  Brachman & Levesque  2005   Procedural Control       

If-then-else

Sometimes inconvenient to separate clauses  in terms 
of unification, as in

! G(zero, – )  :-  method 1! !                  
G(succ(n), – )  :-  method 2

For example, might not have distinct cases:
! NumberOfParentsOf(adam, 0)

NumberOfParentsOf(eve, 0)!
! NumberOfParentsOf(x, 2)

! want:  2 for everyone except Adam and Eve

Or cases may split based on computed property:
! Expt(a, n, x)  :- Even(n), (what to do when n is even)

Expt(a, n, x)  :- Even(s(n)), (what to do when n is odd)
! want:  check for even numbers only once

Solution:  use ! to do if-then-else
! G  :-  P, !, Q.

G  :-  R.
! To achieve G:  if P  then use Q else use R
! Expt(a, n, x)  :-  Even(n),  !,  (for even n)!

Expt(a, n, x)  :-  (for odd n )
! NumberOfParentsOf(adam, 0)   :-  ! 

NumberOfParentsOf(eve, 0)      :-  ! 
NumberOfParentsOf(x, 2)

KR & R! ©  Brachman & Levesque  2005   Procedural Control       

Controlling backtracking

AncestorOf(jane,billy),  Male(jane)

ParentOf(jane,billy),  Male(jane)

Male(jane)

FAILS

ParentOf(z, billy),  AncestorOf(jane, z), Male(jane)

Eventually FAILS

1

2

3 4

Consider a goal

So goal should be:  
! AncestorOf(jane,billy), !,  Male(jane)

Similarly:
! Member(x,l)  ⇐  FirstElement(x,l)

Member(x,l)  ⇐  Rest(l,l′)  ∧  Member(x,l′)

If only to be used for testing, want
! Member(x,l)  :-  FirstElement(x,l), !

On failure, do not try to find another x later in 
rest of list



KR & R! ©  Brachman & Levesque  2005   Procedural Control       

Negation as failure

Procedurally: can distinguish between
– can solve goal  ¬G

– cannot solve G

Use not(G) to mean goal that succeeds if G fails, and 
fails if G succeeds

! Roughly
! not(G)  :-  G, !, fail! /*  fail if G succeeds  */
not(G) ! ! /*  otherwise succeed  */

Only terminates when failure is finite
no more resolvents  vs.  infinite branch

Useful when DB + rules is complete
! NoParents(x)  :-  not(ParentOf(z,x))

or when method already exists for complement 
! Composite(n)  :-  not(PrimeNum(n))

Declaratively:  same reading as ¬,  but complications 
with new variables in G

# # [not(ParentOf(z,x))  ⊃  NoParents(x)]! 4
! vs.! [¬ParentOf(z,x)  ⊃  NoParents(x)] # # 8

KR & R! ©  Brachman & Levesque  2005   Procedural Control       

Dynamic DB

Sometimes useful to think of DB as a snapshot of the 
world that can be changed dynamically

! assertions,  deletions

then useful to consider three procedural 
interpretations for rules like

! ParentOf(x,y)  ⇐  MotherOf(x,y)

1.!If-needed
! Whenever have a goal matching ParentOf(x,y), can solve it 

by solving MotherOf(x,y)
! ordinary back-chaining, as in Prolog

2.!If-added
! Whenever something matching MotherOf(x,y) is added to the 

DB, also add ParentOf(x,y)
! forward-chaining

3.!If-removed
! Whenever something matching MotherOf(x,y) is removed 

from  the DB, also remove ParentOf(x,y)
! keeping track of dependencies in DB 

Interpretations (2) and (3) suggest demons
! procedures that monitor DB and fire when certain 

conditions are met



KR & R! ©  Brachman & Levesque  2005   Procedural Control       

The Planner language

Main ideas:
1.!DB of facts  

! (Mother susan john)
(Person john)

2.!If-needed, if-added, if-removed procedures 
consisting of

– body:   program to execute
– pattern for invocation  (Mother x  y)

3.!Each program statement can succeed or fail
– (goal p), (assert p), (erase p),
– (and s ... s),  statements with backtracking
– (not s), negation as failure
– (for p  s),  do s  for every way p succeeds
– (finalize s), like cut
– a lot more, including all of Lisp

Example:
(proc if-needed (cleartable)
(for (on x  table)
   (and (erase (on x  table))
        (goal (putaway x))))) 

(proc if-removed (on x  y)
(print x  " is no longer on " y))

Shift from proving conditions to making conditions hold
(if only in DB)


