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Optimisation problems

Definition 1
An optimisation problem is characterised by

a set of input instances

a set of feasible solutions for each input instance

a value for each feasible solution

In a maximisation problem (resp., a minimisation) problem, the goal is to find a
feasible solution with maximum (resp., minimum) value.

Example: In the Vertex Cover minimisation problem, the input is a graph G,
the feasible solutions are all the vertex covers of G, and the value of a vertex
cover is its size.
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Approximation algorithm

Definition 2
An approximation algorithm A for an optimisation problem Π is a polynomial time
algorithm that returns a feasible solution.
Denote by A(I) the value of the feasible solution returned by the approximation
algorithm A for an instance I and by OPT(I) the value of the optimum solution.
If Π is a minimisation problem, then the approximation ratio of A is r if

A(I)

OPT(I)
≤ r for every instance I.

If Π is a maximisation problem, then the approximation ratio of A is r if

OPT(I)

A(I)
≤ r for every instance I.

We say that A is an r-approximation algorithm if it has approximation ratio r.
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Problem Definition

Multiway Cut
Input: A connected graph G = (V,E) and a set of terminals

S = {s1, . . . , sk}
Feasible Solution: A multiway cut, i.e., an edge subset X ⊆ E such that the

graph (V,E \ X) has no path between any two distinct
terminals

Objective: Minimize the size of the multiway cut.

a

b
c

d e

f g
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Complexity

Multiway Cut is NP-complete, even when k = 3 [Dah+94].
Multiway Cut can be solved in polynomial time when k = 2 by a maximum
flow algorithm.
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Approximation algorithm

Algorithm Greedy-MC

For each i ∈ {1, . . . , k}, compute a smallest edge set Ci, separating si from
the other terminals.
(This can be done by computing a smallest cut between si and s−i in the
graph obtained from G by merging all the vertices in S \ {si} into a new
vertex s−i.)

Return
⋃

i∈{1,...,k} Ci.
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Approximation ratio

Theorem 3 ([Dah+94])

Greedy-MC is a 2-approximation algorithm for Multiway Cut.

Proof.
First, note that the algorithm runs in polynomial time.
To show that its approximation ratio is at most 2, let us compare the size of the
solution it returns, C =

⋃
i∈{1,...,k} Ci, to the size of an optimal solution, A.

The graph (V,E \A) has k connected components G1, . . . , Gk, one for each
s1, . . . , sk.
Let Ai ⊆ A denote the edges with one endpoint in Gi. Observe that A =

⋃
Ai.

Since each edge of A is incident to two of the connected components, we have
that

2 · |A| =
k∑

i=1

|Ai| ≥
k∑

i=1

|Ci| ≥ |C|

Since |C| ≤ 2 · |A|, Greedy-MC is a 2-approximation algorithm.
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Vertex cover

Recall: A vertex cover of a graph G = (V,E) is a subset of vertices S ⊆ V such
that for each edge {u, v} ∈ E, we have u ∈ S or v ∈ S.

Vertex Cover
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have a vertex cover of size at most k?

a
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Preprocessing algorithm for Vertex Cover

VC-preprocess
Input: A graph G and an integer k.
Output: A graph G′ and an integer k′ such that G has a vertex cover of size

at most k if and only if G′ has a vertex cover of size at most k′.

G′ ← G
k′ ← k
repeat

Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and
(Number of Edges) for (G′, k′)

until no simplification rule applies
return (G′, k′)

Claim: It is easy to add some book-kepping to this preprocessing algorithm so
that any vertex cover S′ for G′ of size O((k′)2) can be extended to a vertex cover
for G of size O(k2) in polynomial time.
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Approximation algorithm for Vertex Cover

Since VC-preprocess returns an equivalent instance (G′, k′) of size O(k2), we have
that

Corollary 4

The Vertex Cover optimisation problem has an approximation algorithm with
approximation ratio O(OPT).

Proof sketch.
We start from k = 0 and increment k until a solution is returned

For a given value of k, kernelize.

If (Number of Edges) does not return No, then return a vertex cover
containing all the vertices of the kernelized graph, along with the vertices
determined by the bookkeeping of the kernelization procedure.

This procedure returns a vertex cover of size O(OPT2).

Can we obtain a constant approximation ratio?
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Integer Linear Program for Vertex Cover

The Vertex Cover problem can be written as an Integer Linear Program (ILP).
For an instance (G = (V,E), k) for Vertex Cover with V = {v1, . . . , vn},
create a variable xi for each vertex vi, 1 ≤ i ≤ n.
Let X = {x1, . . . , xn}.

ILPVC(G)=
Minimize

n∑
i=1

xi

xi + xj ≥ 1 for each {vi, vj} ∈ E
xi ∈ {0, 1} for each i ∈ {1, . . . , n}

Then, (G, k) is a Yes-instance iff the objective value of ILPVC(G) is at most k.

Note: Since we just reduced the NP-complete Vertex Cover problem to ILP,
we conclude that ILP is NP-hard.
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LP relaxation for Vertex Cover

LPVC(G)=
Minimize

n∑
i=1

xi

xi + xj ≥ 1 for each {vi, vj} ∈ E
xi ≥ 0 for each i ∈ {1, . . . , n}

Note: the value of an optimal solution for the Linear Program LPVC(G) is at
most the value of an optimal solution for ILPVC(G)

Note 2: Linear Programs (LP) can be solved in polynomial time [CLS19].
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Properties of LP optimal solution

Let α : X → R≥0 be an optimal solution for LPVC(G). Let

V− = {vi : α(xi) < 1/2}
V1/2 = {vi : α(xi) = 1/2}
V+ = {vi : α(xi) > 1/2}

Lemma 5

For each i, 1 ≤ i ≤ n, we have that α(xi) ≤ 1.

Lemma 6
V− is an independent set.

Lemma 7

NG(V−) = V+.
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Properties of LP optimal solution II

Lemma 8

For each S ⊆ V+ we have that |S| ≤ |NG(S) ∩ V−|.

Proof.
For the sake of contradiction, suppose there is a set S ⊆ V+ such that
|S| > |NG(S) ∩ V−|.
Let ε = minvi∈S{α(xi)− 1/2} and α′ : X → R≥0 s.t.

α′(xi) =


α(xi) if vi /∈ S ∪ (NG(S) ∩ V−)

α(xi)− ε if vi ∈ S
α(xi) + ε if vi ∈ NG(S) ∩ V−

Note that α′ is an improved solution for LPVC(G), contradicting that α is
optimal.
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Properties of LP optimal solution III

Theorem 9 (Hall’s marriage theorem)

A bipartite graph G = (V ] U,E) has a matching saturating S ⊆ V

⇔

for every subset W ⊆ S we have |W | ≤ |NG(W )|. 1

Consider the bipartite graph B = (V− ] V+, {{u, v} ∈ E : u ∈ V−, v ∈ V+}).

Lemma 10

There exists a matching M in B of size |V+|.

Proof.
The lemma follows from the previous lemma and Hall’s marriage theorem.

1A matching M in a graph G is a set of edges such that no two edges in M have a common
endpoint. A matching saturates a set of vertices S if each vertex in S is an end point of an edge
in M .
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Crown Decomposition: Definition

Definition 11 (Crown Decomposition)

A crown decomposition (C,H,B) of a graph G = (V,E) is a partition of V into
sets C,H, and B such that

the crown C is a non-empty independent set,

the head H = NG(C),

the body B = V \ (C ∪H), and

there is a matching of size |H| in G[H ∪ C].

By the previous lemmas, we obtain a crown decomposition (V−, V+, V1/2) of G if
V− 6= ∅.
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Crown Decomposition: Examples
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({a, e, g}, {b, d, f}, {c})
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Using the crown decomposition

Lemma 12

Suppose that G = (V,E) has a crown decomposition (C,H,B). Then,

vc(G) ≤ k ⇔ vc(G[B]) ≤ k − |H|,

where vc(G) denotes the size of the smallest vertex cover of G.

Proof.

(⇒): Let S be a vertex cover of G with |S| ≤ k. Since S contains at least one
vertex for each edge of a matching, |S ∩ (C ∪H)| ≥ |H|. Therefore, S ∩B is a
vertex cover for G[B] of size at most k − |H|.
(⇐): Let S be a vertex cover of G[B] with |S| ≤ k − |H|. Then, S ∪H is a
vertex cover of G of size at most k, since each edge that is in G but not in G′ is
incident to a vertex in H.
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Nemhauser-Trotter

Corollary 13 ([Nemhauser, Trotter, 1974])

There exists a smallest vertex cover S of G such that S ∩ V− = ∅ and V+ ⊆ S.

Corollary 14 ([Nemhauser, Trotter, 1974])

Vertex Cover has a 2-approximation algorithm.
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Crown reduction

(Crown Reduction)

If solving LPV C(G) gives an optimal solution with V− 6= ∅, then return
(G− (V− ∪ V+), k − |V+|).

(Number of Vertices)

If solving LPV C(G) gives an optimal solution with V− = ∅ and |V | > 2k, then
return No.

Lemma 15

(Crown Reduction) and (Number of Vertices) are sound.

Proof.

(Crown Reduction) is sound by previous Lemmas.
Let α be an optimal solution for LPV C(G) and suppose V− = ∅. The value of this
solution is at least |V |/2. Thus, the value of an optimal solution for ILPVC(G) is
at least |V |/2. Since G has no vertex cover of size less than |V |/2, we have a
No-instance if k < |V |/2.
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Linear vertex-kernel for Vertex Cover

Theorem 16

Vertex Cover has a kernel with 2k vertices and O(k2) edges.

This is the smallest known kernel for Vertex Cover.
See http://fpt.wikidot.com/fpt-races for the current smallest kernels for
various problems.
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Crown Decomposition: Definition

Recall:

Definition 17 (Crown Decomposition)

A crown decomposition (C,H,B) of a graph G = (V,E) is a partition of V into
sets C,H, and B such that

the crown C is a non-empty independent set,

the head H = NG(C),

the body B = V \ (C ∪H), and

there is a matching of size |H| in G[H ∪ C].
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Crown Lemma

Lemma 18 (Crown Lemma)

Let G = (V,E) be a graph without isolated vertices and with |V | ≥ 3k + 1.
There is a polynomial time algorithm that either

finds a matching of size k + 1 in G, or

finds a crown decomposition of G.
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Crown Lemma

Lemma 18 (Crown Lemma)

Let G = (V,E) be a graph without isolated vertices and with |V | ≥ 3k + 1.
There is a polynomial time algorithm that either

finds a matching of size k + 1 in G, or

finds a crown decomposition of G.

To prove the lemma, we need Kőnig’s Theorem

Theorem 19 ([Kőnig, 1916])

In every bipartite graph the size of a maximum matching is equal to the size of a
minimum vertex cover.
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Crown Lemma

Lemma 18 (Crown Lemma)

Let G = (V,E) be a graph without isolated vertices and with |V | ≥ 3k + 1.
There is a polynomial time algorithm that either

finds a matching of size k + 1 in G, or

finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If |M | ≥ k + 1, we are done.

Note that I := V \ V (M) is an independent set with ≥ k + 1 vertices.
Consider the bipartite graph B formed by edges with one endpoint in V (M) and
the other in I.
Compute a minimum vertex cover X and a maximum matching M ′ of B.
We know: |X| = |M ′| ≤ |M | ≤ k. Hence, X ∩ V (M) 6= ∅.
Let M∗ = {e ∈M ′ : e ∩ (X ∩ V (M)) 6= ∅}.
We obtain a crown decomposition with crown C = V (M∗) ∩ I and head
H = X ∩ V (M) = X ∩ V (M∗).
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After computing a kernel ...

... we can use any algorithm to compute an actual solution.

Brute-force, faster exponential-time algorithms, parameterized algorithms,
often also approximation algorithms
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Kernels

A parameterized problem may not have a kernelization algorithm

Example, Coloring2 parameterized by k has no kernelization algorithm
unless P = NP.
A kernelization would lead to a polynomial time algorithm for the
NP-complete 3-Coloring problem

Only exponential kernels may be known for a parameterized problem

There is a theory of kernel lower bounds, establishing exponential lower
bounds on the kernel size of certain parameterized problems.

2Can one color the vertices of an input graph G with k colors such that no two adjacent
vertices receive the same color?
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Approximation algorithms

Besides constant factor approximation algorithms, positive results include:

additive approximation (rare)

polynomial time approximation schemes (PTAS): able to achive an
approximation ratio 1 + ε for any constant ε in polynomial time, but the
running time depends on 1/ε. Restrictions include EPTAS (Efficient PTAS)
and FPTAS (Fully PTAS), restricting how the running time may depend on
the parameter 1/ε.

Negative results include

no factor-c approximation algorithm unless P = NP / unless the Unique
Games conjecture fails, etc.

APX-hardness, ruling out PTASs
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Further Reading

Vazirani’s textbook [Vaz03]

Fellows et al.’s survey on Vertex Cover kernelization [Fel+18]
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