2a. Kernelization

COMP6741: Parameterized and Exact Computation

Serge Gaspers¹²

¹School of Computer Science and Engineering, UNSW Sydney, Asutralia ²Decision Sciences, Data61, CSIRO, Australia

Semester 2, 2018

- **2** Kernel for HAMILTONIAN CYCLE
- 3 Kernel for EDGE CLIQUE COVER
- 4 Frequently Arising Issues

- **(2)** Kernel for HAMILTONIAN CYCLE
- 3 Kernel for EDGE CLIQUE COVER
 - 4 Frequently Arising Issues

Definition 1

A kernelization (kernel) for a parameterized problem Π is a **polynomial time** algorithm, which, for any instance I of Π with parameter k, produces an **equivalent** instance I' of Π with parameter k' such that $|I'| \leq f(k)$ and $k' \leq f(k)$ for a computable function f. We refer to the function f as the size of the kernel.

Definition 2

A parameterized problem Π is fixed-parameter tractable (FPT) if there is an algorithm solving Π in time $f(k) \cdot poly(n)$, where n is the instance size, k is the parameter, poly is a polynomial function, and f is a computable function.

Theorem 3

Let Π be a decidable parameterized problem. Π has a kernelization $\Leftrightarrow \Pi$ is FPT.

2 Kernel for HAMILTONIAN CYCLE

- 3 Kernel for EDGE CLIQUE COVER
 - 4 Frequently Arising Issues

A Hamiltonian cycle of G is a subgraph of G that is a cycle on |V(G)| vertices.

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance? **Issue**: We do not actually know a vertex cover of size k.

- Obtain a vertex cover of size $\leq 2k$ by applying VERTEX COVER-kernelizations to $(G, 0), (G, 1), \ldots$ until the first instance where no trivial No-instance is returned.
- If C is a vertex cover of size $\leq 2k$, then $I = V \setminus C$ is an independent set of size $\geq |V| 2k$.
- No two consecutive vertices in the Hamiltonian Cycle can be in *I*.
- A kernel with $\leq 4k$ vertices can now be obtained with the following simplification rule.

(Too-large)

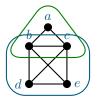
Compute a vertex cover C of size $\leq 2k$ in polynomial time. If 2|C| < |V|, then return No

- **3** Kernel for EDGE CLIQUE COVER
 - 4 Frequently Arising Issues

Definition 4

An edge clique cover of a graph G = (V, E) is a set of cliques in G covering all its edges. In other words, if $\mathcal{C} \subseteq 2^V$ is an edge clique cover then each $S \in \mathcal{C}$ is a clique in G and for each $\{u, v\} \in E$ there exists an $S \in \mathcal{C}$ such that $u, v \in S$.

Example: $\{\{a, b, c\}, \{b, c, d, e\}\}$ is an edge clique cover for this graph.



Edge Clique Cover

Input:	A graph $G = (V, E)$ and an integer k
Parameter:	k
Question:	Does G have an edge clique cover of size at most k ?

The size of an edge clique cover C is the number of cliques contained in C and is denoted |C|.

Definition 4

A clique S in a graph G is a maximal clique if there is no other clique S' in G with $S \subset S'$.

Lemma 5

A graph G has an edge clique cover C of size at most k if and only if G has an edge clique cover C' of size at most k such that each $S \in C'$ is a maximal clique.

Proof sketch.

(⇒): Replace each clique $S \in C$ by a maximal clique S' with $S \subseteq S'$. (⇐): Trivial, since C' is an edge clique cover of size at most k. **Thought experiment**: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?

Simplification rules for EDGE CLIQUE COVER II

The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex $v \in V$ with $d_G(v) = 0$, then set $G \leftarrow G - v$.

Lemma 6

(Isolated) is sound.

Proof sketch.

Since no edge is incident to v, a smallest edge clique cover for G - v is a smallest edge clique cover for G, and vice-versa.

Simplification rules for EDGE CLIQUE COVER II

The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex $v \in V$ with $d_G(v) = 0$, then set $G \leftarrow G - v$.

Lemma 6

(Isolated) is sound.

Proof sketch.

Since no edge is incident to v, a smallest edge clique cover for G - v is a smallest edge clique cover for G, and vice-versa.

(Isolated-Edge)

If $\exists uv \in E$ such that $d_G(u) = d_G(v) = 1$, then set $G \leftarrow G - \{u, v\}$ and $k \leftarrow k - 1$.

Simplification rules for Edge CLIQUE COVER III

(Twins)

If $\exists u, v \in V$, $u \neq v$, such that $N_G[u] = N_G[v]$, then set $G \leftarrow G - v$.

Lemma 7

(Twins) is sound.

Simplification rules for EDGE CLIQUE COVER III

(Twins)

If $\exists u, v \in V$, $u \neq v$, such that $N_G[u] = N_G[v]$, then set $G \leftarrow G - v$.

Lemma 7

(Twins) is sound.

Proof.

We need to show that G has an edge clique cover of size at most k if and only if G - v has an edge clique cover of size at most k. (\Rightarrow): If C is an edge clique cover of G of size at most k, then $\{S \setminus \{v\} : S \in C\}$ is an edge clique cover of G - v of size at most k. (\Leftarrow): Let C' be an edge clique cover of G - v of size at most k. Partition C into $C_u = \{S \in C : u \in S\}$ and $C_{\neg u} = C \setminus C_u$. Note that each set in $C'_u = \{S \cup \{v\} : S \in C_u\}$ is a clique since $N_G[u] = N_G[v]$ and that each edge incident to v is contained in at least one of these cliques. Now, $C'_u \cup C_{\neg u}$ is an edge clique cover of G of size at most k.

Simplification rules for Edge CLIQUE COVER IV

If the previous simplification rules do not apply and $|V| > 2^k$, then return No.

Lemma 8

(Size-V) is sound.

Simplification rules for EDGE CLIQUE COVER IV

(Size-V)

If the previous simplification rules do not apply and $|V| > 2^k$, then return No.

Lemma 8

(Size-V) is sound.

Proof.

For the sake of contradiction, assume neither (Isolated) nor (Twins) are applicable, $|V| > 2^k$, and G has an edge clique cover C of size at most k. Since $2^{\mathcal{C}}$ (the set of all subsets of C) has size at most 2^k , and every vertex belongs to at least one clique in C by (Isolated), we have that there exists two vertices $u, v \in V$ such that $\{S \in \mathcal{C} : u \in S\} = \{S \in \mathcal{C} : v \in S\}$. But then, $N_G[u] = \bigcup_{S \in \mathcal{C} : u \in S} S = \bigcup_{S \in \mathcal{C} : v \in S} S = N_G[v]$, contradicting that (Twin) is not applicable.

Theorem 9

EDGE CLIQUE COVER has a kernel with $O(2^k)$ vertices and $O(4^k)$ edges.

Corollary 10

EDGE CLIQUE COVER *is* FPT.

- (2) Kernel for HAMILTONIAN CYCLE
- 3 Kernel for EDGE CLIQUE COVER
- 4 Frequently Arising Issues

Issue 1: A kernelization needs to produce an instance of the same problem. How could we turn the following lemma into a simplification rule?

Lemma 11

If there is an edge $\{u, v\} \in E$ such that $S = N_G[u] \cap N_G[v]$ is a clique, then there is a smallest edge clique cover C with $S \in C$.

Proof.

By Lemma 5, we may assume the clique covering the edge $\{u, v\}$ is a maximal clique. But, S is the unique maximal clique covering $\{u, v\}$.

(Neighborhood-Clique)

If there exists $\{u, v\} \in E$ such that $S = N_G[u] \cap N_G[v]$ is a clique, then ...???

Edges with both endpoints in $S \setminus \{u,v\}$ are covered by S but might still be needed in other cliques.

We could design a kernelization for a more general problem.

Generalized Edge Clique Cover		
Input: Parameter:	A graph $G = (V, E)$, a set of edges $R \subseteq E$, and an integer $k k$	
Question:	Is there a set C of at most k cliques in G such that each $e \in R$ is contained in at least one of these cliques?	

(Neighborhood-Clique)

If there exists $\{u, v\} \in R$ such that $S = N_G[u] \cap N_G[v]$ is a clique, then set $G \leftarrow (V, E \setminus \{u, v\})$, $R \leftarrow R \setminus \{\{x, y\} : x, y \in S\}$, and $k \leftarrow k - 1$.

Issue 2: A proposed simplification rule might not be sound. Consider the following simplification rule for VERTEX COVER.

(Degk)
If
$$\exists v \in V$$
 such that $d_G(v) \ge k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

To show that a simplification rule is not sound, we exhibit a counter-example.

Issue 3: A problem might be FPT, but only an exponential kernel might be known / possible to achieve.