3. Branching Algorithms
 COMP6741: Parameterized and Exact Computation

Serge Gaspers
Semester 2, 2016

Contents

1 Introduction 1
2 Maximum Independent Set 3
2.1 Simple Analysis 3
2.2 Search Trees and Branching Numbers 5
2.3 Measure Based Analysis 6
2.4 Optimizing the measure 8
2.5 Exponential Time Subroutines 9
2.6 Structures that arise rarely 10
2.7 State Based Measures 11
3 Max 2-CSP 11
4 Further Reading 12

1 Introduction

Recall: Maximal Independent Sets

- A vertex set $S \subseteq V$ of a graph $G=(V, E)$ is an independent set in G if there is no edge $u v \in E$ with $u, v \in S$.
- An independent set is maximal if it is not a subset of any other independent set.
- Examples:

Enumeration problem: Enumerate all maximal independent sets

```
Enum-MIS
    Input: graph G
    Output: all maximal independent sets of G
```


Maximal independent sets: $\{a, d\},\{b\},\{c\}$
Note: Let v be a vertex of a graph G. Every maximal independent set contains a vertex from $N_{G}[v]$.

Branching Algorithm for Enum-MIS

Algorithm enum-mis(G,I)
Input : A graph $G=(V, E)$, an independent set I of G.
Output: All maximal independent sets of G that are supersets of I.

```
\(G^{\prime} \leftarrow G-N_{G}[I]\)
if \(V\left(G^{\prime}\right)=\emptyset\) then // \(G^{\prime}\) has no vertex
Output \(I\)
else
    Select \(v \in V\left(G^{\prime}\right)\) such that \(d_{G^{\prime}}(v)=\delta\left(G^{\prime}\right) \quad / / v\) has min degree in \(G^{\prime}\)
    Run enum-mis \((G, I \cup\{u\})\) for each \(u \in N_{G^{\prime}}[v]\)
```


Running Time Analysis

Let us upper bound by $L(n)=2^{\alpha n}$ the number of leaves in any search tree of enum-mis for an instance with $\left|V\left(G^{\prime}\right)\right| \leq n$.

We minimize α (or 2^{α}) subject to constraints obtained from the branching:

$$
\begin{array}{rlrl}
& L(n) & \geq(d+1) \cdot L(n-(d+1)) & \\
& & \text { for each integer } d \geq 0 . \\
\Leftrightarrow & & & \text { for each integer } d^{\prime} \geq 1 . \\
\Leftrightarrow & 2^{\alpha n} & \geq d^{\prime} \cdot 2^{\alpha \cdot\left(n-d^{\prime}\right)} & \\
\text { for each integer } d^{\prime} \geq 1 .
\end{array}
$$

For fixed d^{\prime}, the smallest value for 2^{α} satisfying the constraint is $d^{\prime 1 / d^{\prime}}$. The function $f(x)=x^{1 / x}$ has its maximum value for $x=e$ and for integer x the maximum value of $f(x)$ is when $x=3$.

Therefore, the minimum value for 2^{α} for which all constraints hold is $3^{1 / 3}$. We can thus set $L(n)=3^{n / 3}$.
Since the height of the search trees is $\leq\left|V\left(G^{\prime}\right)\right|$, we obtain:
Theorem 1. Algorithm enum-mis has running time $O^{*}\left(3^{n / 3}\right) \subseteq O\left(1.4423^{n}\right)$, where $n=|V|$.
Corollary 2. A graph on n vertices has $O\left(3^{n / 3}\right)$ maximal independent sets.

Running Time Lower Bound

Theorem 3. There is an infinite family of graphs with $\Omega\left(3^{n / 3}\right)$ maximal independent sets.

Branching Algorithm

- Selection: Select a local configuration of the problem instance
- Recursion: Recursively solve subinstances
- Combination: Compute an optimal solution of the instance based on the optimal solutions of the subinstances
- Simplification rule: 1 recursive call
- Branching rule: ≥ 2 recursive calls

2 Maximum Independent Set

```
Maximum Independent Set
    Input: graph G
    Output: A largest independent set of G.
```


Branching Algorithm for Maximum Independent Set

Algorithm $\boldsymbol{m i s}(G)$
Input : A graph $G=(V, E)$.
Output: The size of a maximum i.s. of G.

```
if }\Delta(G)\leq2\mathrm{ then
    // G has max degree \leq2
        return the size of a maximum i.s. of G in polynomial time
    else if }\existsv\inV:d(v)=1 then
        // v has degree 1
        return 1+ mis(G-N[v])
    else if G is not connected then
        Let G}\mp@subsup{G}{1}{}\mathrm{ be a connected component of G
        return mis}(\mp@subsup{G}{1}{})+\operatorname{mis}(G-V(\mp@subsup{G}{1}{})
    else
        Select v\inV s.t. d(v)=\Delta(G) // v has max degree
        return max (1+ mis(G-N[v]), mis}(G-v)
```


Correctness

Line 4.
Lemma 4. If $v \in V$ has degree 1 , then G has a maximum independent set I with $v \in I$.
Proof. Let J be a maximum independent set of G. If $v \in J$ we are done because we can take $I=J$. If $v \notin J$, then $u \in J$, where u is the neighbor of v, otherwise J would not be maximum. Set $I=(J \backslash\{u\}) \cup\{v\}$. We have that I is an independent set, and, since $|I|=|J|, I$ is a maximum independent set containing v.

2.1 Simple Analysis

Lemma 5 (Simple Analysis Lemma). Let

- A be a branching algorithm
- $\alpha>0, c \geq 0$ be constants
such that on input I, A calls itself recursively on instances I_{1}, \ldots, I_{k}, but, besides the recursive calls, uses time $O\left(|I|^{c}\right)$, such that

$$
\begin{align*}
& (\forall i: 1 \leq i \leq k) \quad\left|I_{i}\right| \leq|I|-1, \text { and } \tag{1}\\
& 2^{\alpha \cdot\left|I_{1}\right|}+\cdots+2^{\alpha \cdot\left|I_{k}\right|} \leq 2^{\alpha \cdot|I|} \tag{2}
\end{align*}
$$

Then A solves any instance I in time $O\left(|I|^{c+1}\right) \cdot 2^{\alpha \cdot|I|}$.

Proof. By induction on $|I|$. W.l.o.g., suppose the hypotheses' O statements hide a constant factor $d \geq 0$, and for the base case assume that the algorithm returns the solution to an empty instance in time $d \leq d \cdot|I|^{c+1} 2^{\alpha \cdot|I|}$.

Suppose the lemma holds for all instances of size at most $|I|-1 \geq 0$, then the running time of algorithm A on instance I is

$$
\begin{array}{rlr}
T_{A}(I) & \leq d \cdot|I|^{c}+\sum_{i=1}^{k} T_{A}\left(I_{i}\right) & \text { (by definition) } \\
& \leq d \cdot|I|^{c}+\sum d \cdot\left|I_{i}\right|^{c+1} 2^{\alpha \cdot\left|I_{i}\right|} & \text { (by the inductive hypothesis) } \\
& \leq d \cdot|I|^{c}+d \cdot(|I|-1)^{c+1} \sum 2^{\alpha \cdot\left|I_{i}\right|} & \tag{1}\\
& \leq d \cdot|I|^{c}+d \cdot(|I|-1)^{c+1} 2^{\alpha \cdot|I|} & \text { (by (1)) } \\
& \leq d \cdot|I|^{c+1} 2^{\alpha \cdot|I|} . &
\end{array}
$$

The final inequality uses that $\alpha \cdot|I|>0$ and holds for any $c \geq 0$.

Simple Analysis for mis

- At each node of the search tree: $O\left(n^{2}\right)$
- G disconnected: (1) If $\alpha \cdot s<1$, then $s<1 / \alpha$, and the algorithm solves G_{1} in constant time (provided $\alpha>0$, which we expect). We can view this rule as a simplification rule, getting rid of G_{1} and making one recursive call on $G-V\left(G_{1}\right)$. (2) If $\alpha \cdot(n-s)<1$: similar as (1). (3) Otherwise,

$$
\begin{equation*}
(\forall s: 1 / \alpha \leq s \leq n-1 / \alpha) \quad 2^{\alpha \cdot s}+2^{\alpha \cdot(n-s)} \leq 2^{\alpha \cdot n} \tag{3}
\end{equation*}
$$

always satisfied since the function 2^{x} has slope ≥ 1 when $x \geq 1$.

- Branch on vertex of degree $d \geq 3$

$$
\begin{equation*}
(\forall d: 3 \leq d \leq n-1) \quad 2^{\alpha \cdot(n-1)}+2^{\alpha \cdot(n-1-d)} \leq 2^{\alpha n} \tag{4}
\end{equation*}
$$

Dividing all these terms by $2^{\alpha n}$, the constraints become

$$
\begin{equation*}
2^{-\alpha}+2^{\alpha \cdot(-1-d)} \leq 1 \tag{5}
\end{equation*}
$$

Compute optimum α

The minimum α satisfying the constraints is obtained by solving a convex mathematical program minimizing α subject to the constraints (the constraint for $d=3$ is sufficient as all other constraints are weaker).

Alternatively, set $x:=2^{\alpha}$, compute the unique positive real root of each of the characteristic polynomials

$$
c_{d}(x):=x^{-1}+x^{-1-d}-1,
$$

and take the maximum of these roots [Kullmann '99].

d	x	α
3	1.3803	0.4650
4	1.3248	0.4057
5	1.2852	0.3620
6	1.2555	0.3282
7	1.2321	0.3011

Simple Analysis: Result

- use the Simple Analysis Lemma with $c=2$ and $\alpha=0.464959$
- running time of Algorithm mis upper bounded by $O\left(n^{3}\right) \cdot 2^{0.464959 \cdot n}=O\left(2^{0.4650 \cdot n}\right)$ or $O\left(1.3803^{n}\right)$

Lower bound

$$
T(n)=T(n-5)+T(n-3)
$$

- for this graph, P_{n}^{2}, the worst case running time is $1.1938 \ldots{ }^{n} \cdot \operatorname{poly}(n)$
- Run time of algo mis is $\Omega\left(1.1938^{n}\right)$

Worst-case running time - a mystery

What is the worst-case running time of Algorithm mis?

- lower bound $\Omega\left(1.1938^{n}\right)$
- upper bound $O\left(1.3803^{n}\right)$

2.2 Search Trees and Branching Numbers

Search Trees

Denote $\mu(I):=\alpha \cdot|I|$.

Example: execution of mis on a P_{n}^{2}

Branching number: Definition

Consider a constraint

$$
2^{\mu(I)-a_{1}}+\cdots+2^{\mu(I)-a_{k}} \leq 2^{\mu(I)}
$$

Its branching number is

$$
2^{-a_{1}}+\cdots+2^{-a_{k}}
$$

and is denoted by

$$
\left(a_{1}, \ldots, a_{k}\right)
$$

Clearly, any constraint with branching number at most 1 is satisfied.

Branching numbers: Properties

Dominance For any a_{i}, b_{i} such that $a_{i} \geq b_{i}$ for all $i, 1 \leq i \leq k$,

$$
\left(a_{1}, \ldots, a_{k}\right) \leq\left(b_{1}, \ldots, b_{k}\right)
$$

as $2^{-a_{1}}+\cdots+2^{-a_{k}} \leq 2^{-b_{1}}+\cdots+2^{-b_{k}}$.
In particular, for any $a, b>0$,

$$
\text { either } \quad(a, a) \leq(a, b) \quad \text { or } \quad(b, b) \leq(a, b) .
$$

Balance If $0<a \leq b$, then for any ε such that $0 \leq \varepsilon \leq a$,

$$
(a, b) \leq(a-\varepsilon, b+\varepsilon)
$$

by convexity of 2^{x}.

2.3 Measure Based Analysis

- Goal
- capture more structural changes when branching into subinstances
- How?
- potential-function method, a.k.a., Measure \mathcal{E} Conquer
- Example: Algorithm mis
- advantage when degrees of vertices decrease

Measure

Instead of using the number of vertices, n, to track the progress of mis, let us use a measure μ of G.
Definition 6. A measure μ for a problem P is a function from the set of all instances for P to the set of non negative reals.

Let us use the following measure for the analysis of mis on graphs of maximum degree at most 5:

$$
\mu(G)=\sum_{i=0}^{5} \omega_{i} n_{i},
$$

where $n_{i}:=|\{v \in V: d(v)=i\}|$.

Measure Based Analysis

Lemma 7 (Measure Analysis Lemma). Let

- A be a branching algorithm
- $c \geq 0$ be a constant, and
- $\mu(\cdot), \eta(\cdot)$ be two measures for the instances of A,
such that on input I, A calls itself recursively on instances I_{1}, \ldots, I_{k}, but, besides the recursive calls, uses time $O\left(\eta(I)^{c}\right)$, such that

$$
\begin{align*}
(\forall i) \quad \eta\left(I_{i}\right) & \leq \eta(I)-1, \text { and } \tag{6}\\
2^{\mu\left(I_{1}\right)}+\ldots+2^{\mu\left(I_{k}\right)} & \leq 2^{\mu(I)} . \tag{7}
\end{align*}
$$

Then A solves any instance I in time $O\left(\eta(I)^{c+1}\right) \cdot 2^{\mu(I)}$.

Analysis of mis for degree at most 5

For $\mu(G)=\sum_{i=0}^{5} \omega_{i} n_{i}$ to be a valid measure, we constrain that

$$
w_{d} \geq 0 \quad \text { for each } d \in\{0, \ldots, 5\}
$$

We also constrain that reducing the degree of a vertex does not increase the measure (useful for analysis of the degree- 1 simplification rule and the branching rule):

$$
-\omega_{d}+\omega_{d-1} \leq 0 \quad \text { for each } d \in\{1, \ldots, 5\}
$$

Lines $1 / 2$ is a halting rule and we merely need that it takes polynomial time so that we can apply Lemma 7 .
Lines 34 of mis need to satisfy (7).
The simplification rule removes v and its neighbor u. We get a constraint for each possible degree of u :

$$
\begin{array}{lrl}
& 2^{\mu(G)-\omega_{1}-\omega_{d}} & \leq 2^{\mu(G)} \\
& \text { for each } d \in\{1, \ldots, 5\} \\
\Leftrightarrow & & \text { for each } d \in\{1, \ldots, 5\} \\
\Leftrightarrow & 2^{-\omega_{1}-\omega_{d}} \leq 2^{0} & \\
\text { for each } d \in\{1, \ldots, 5\}
\end{array}
$$

These constraints are always satisfied since $\omega_{d} \geq 0$ for each $d \in\{0, \ldots, 5\}$. Note: the degrees of u 's other neighbors (if any) decrease, but this degree change does not increase the measure.

For lines 57 of mis we consider two cases.
If $\mu\left(G_{1}\right)<1$ (or $\mu\left(G-V\left(G_{1}\right)\right)<1$, which is handled similarly), then we view this rule as a simplification rule, which takes polynomial time to compute $\operatorname{mis}\left(G_{1}\right)$, and then makes a recursive call $\operatorname{mis}\left(G-V\left(G_{1}\right)\right)$. To ensure that instances with measure <1 can be solved in polynomial time, we constrain that

$$
w_{d}>0 \quad \text { for each } d \in\{3,4,5\}
$$

and this will be implied by other constraints.
Otherwise, $\mu\left(G_{1}\right) \geq 1$ and $\mu\left(G-V\left(G_{1}\right)\right) \geq 1$, and we need to satisfy 77 . Since $\mu(G)=\mu\left(G_{1}\right)+\mu\left(G-V\left(G_{1}\right)\right)$, the constraints

$$
2^{\mu\left(G_{1}\right)}+2^{\mu\left(G-V\left(G_{1}\right)\right)} \leq 2^{\mu(G)}
$$

are always satisfied since the slope of the function 2^{x} is at least 1 when $x \geq 1$. (I.e., we get no new constraints on $\omega_{1}, \ldots, \omega_{5}$.)

Lines 810 of mis need to satisfy 77 . We know that in $G-N[v]$, some vertex of $N^{2}[v]$ has its degree decreased (unless G has at most 6 vertices, which can be solved in constant time). Define

$$
(\forall d: 2 \leq d \leq 5) \quad h_{d}:=\min _{2 \leq i \leq d}\left\{w_{i}-w_{i-1}\right\}
$$

We obtain the following constraints:

$$
\Leftrightarrow \quad \begin{aligned}
& 2^{\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right)}+2^{\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot w_{i}-h_{d}} \leq 2^{\mu(G)} \\
& \Leftrightarrow \quad 2^{-w_{d}-\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right)}+2^{-w_{d}-\sum_{i=2}^{d} p_{i} \cdot w_{i}-h_{d}} \leq 1
\end{aligned}
$$

for all $d, 3 \leq d \leq 5$ (degree of v), and all $p_{i}, 2 \leq i \leq d$, such that $\sum_{i=2}^{d} p_{i}=d$ (number of neighbors of degree i).

Applying the lemma

Our constraints

$$
\begin{aligned}
w_{d} & \geq 0 \\
-\omega_{d}+\omega_{d-1} & \leq 0 \\
2^{-w_{d}-\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right)}+2^{-w_{d}-\sum_{i=2}^{d} p_{i} \cdot w_{i}-h_{d}} & \leq 1
\end{aligned}
$$

are satisfied by the following values:

i	w_{i}	h_{i}
1	0	0
2	0.25	0.25
3	0.35	0.10
4	0.38	0.03
5	0.40	0.02

These values for w_{i} satisfy all the constraints and $\mu(G) \leq 2 n / 5$ for any graph of max degree ≤ 5. Taking $c=2$ and $\eta(G)=n$, the Measure Analysis Lemma shows that mis has run time $O\left(n^{3}\right) 2^{2 n / 5}=O\left(1.3196^{n}\right)$ on graphs of \max degree ≤ 5.

2.4 Optimizing the measure

Compute optimal weights

- By convex programming [Gaspers, Sorkin 2009]

All constraints are already convex, except conditions for h_{d}

$$
\begin{array}{cc}
(\forall d: 2 \leq d \leq 5) & h_{d}:=\min _{2 \leq i \leq d}\left\{w_{i}-w_{i-1}\right\} \\
& \downarrow \\
(\forall i, d: 2 \leq i \leq d \leq 5) & h_{d} \leq w_{i}-w_{i-1} .
\end{array}
$$

Use existing convex programming solvers to find optimum weights.

Convex program in AMPL

```
param maxd integer = 5;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0; # weight for degree reductions from deg <= i
var Wmax; # maximum weight of W[d]
minimize Obj: Wmax; # minimize the maximum weight
subject to MaxWeight {d in DEGREES}:
    Wmax >= W[d];
subject to gNotation {d in DEGREES : 2 <= d}:
    g[d] <= W[d]-W[d-1];
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
    h[d] <= W[i]-W[i-1];
subject to Deg3 {p2 in 0..3, p3 in 0..3: p2+p3=3}:
    2^(-W[3] -p2*g[2] -p3*g[3]) + 2~(-W[3] -p2*W[2] -p3*W[3] -h[3]) <=1;
subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
    2~}(-W[4] - p2*g[2] - p3*g[3] - p4*g[4])
+ 2^(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :
    p2+p3+p4+p5=5}:
```



```
+ 2~ (-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;
```


Convex program in Python

```
from numpy import *
from FuncDesigner import oovar, oovars
from openopt import NLP # install from openopt.org
W = oovars(6)('W')
g = [0]+[W[i]-W[i-1] for i in range(1,6)]
h = oovars(6)('h')
Wmax = oovar('Wmax')
obj = Wmax
startPoint = {W:[1 for i in range(6)],
    h:[0 for i in range(6)],
    Wmax:1}
q = NLP(obj, startPoint)
```

```
for d in range(6): # positive vars
q.constraints.append(W[d] >= 0)
for d in range(6): # Max Weight
    q. constraints.append(Wmax >= W[d])
for d in range(2,6): # h notation
    for i in range(2,d+1):
        q. constraints.append (h[d] <= W[i]-W[i-1])
p = [0 for x in range(6)]
for p[2] in range(4): # Deg 3
    p[3] = 3-p[2]
    q.constraints.append( 2**(-W[3]-sum([p[i]*g[i] for i in range(2,4)]))
                        + 2**(-W[3]-sum([p[i]*W[i] for i in range(2,4)])-h[3])
                        <=1)
for p[2] in range(5): # Deg 4
    for p[3] in range(5-p[2]):
        p[4] = 4-sum(p[2:4])
        q.constraints.append( 2**(-W[4]-sum([p[i]*g[i] for i in range(2,5)]))
                                    +2**(-W[4]-sum([p[i]*W[i] for i in range(2,5)])-h[4])
                                    <=1)
for p[2] in range(6): # Deg 5
    for p[3] in range(6-p[2]):
        for p[4] in range(6-sum(p[2:4])):
        p[5] = 5-sum(p[2:5])
        q.constraints.append( 2**(-W[5]-sum([p[i]*g[i] for i in range(2,6)]))
                                    +2**(-W[5]-sum([p[i]*W[i] for i in range(2,6)])-h[5])
                                    <=1)
q.ftol = 1e-10
q.xtol = 1e-10
r = q.solve('ralg') # use pyipopt for better performance
Wmax_opt = r(Wmax)
print(r.xf)
print("Running time: {0}^n".format(2**Wmax_opt))
```


Optimal weights

i	w_{i}	h_{i}
1	0	0
2	0.206018	0.206018
3	0.324109	0.118091
4	0.356007	0.031898
5	0.358044	0.002037

- use the Measure Analysis Lemma with $\mu(G)=\sum_{i=1}^{5} w_{i} n_{i} \leq 0.358044 \cdot n, c=2$, and $\eta(G)=n$
- mis has running time $O\left(n^{3}\right) 2^{0.358044 \cdot n}=O\left(1.2817^{n}\right)$

2.5 Exponential Time Subroutines

Lemma 8 (Combine Analysis Lemma). Let

- A be a branching algorithm and B be an algorithm,
- $c \geq 0$ be a constant, and
- $\mu(\cdot), \mu^{\prime}(\cdot), \eta(\cdot)$ be three measures for the instances of A and B,
such that $\mu^{\prime}(I) \leq \mu(I)$ for all instances I, and on input I, A either solves I by invoking B with running time $O\left(\eta(I)^{c+1}\right) \cdot 2^{\mu^{\prime}(I)}$, or calls itself recursively on instances I_{1}, \ldots, I_{k}, but, besides the recursive calls, uses time $O\left(\eta(I)^{c}\right)$, such that

$$
\begin{align*}
(\forall i) \quad \eta\left(I_{i}\right) & \leq \eta(I)-1, \text { and } \tag{8}\\
2^{\mu\left(I_{1}\right)}+\ldots+2^{\mu\left(I_{k}\right)} & \leq 2^{\mu(I)} . \tag{9}
\end{align*}
$$

Then A solves any instance I in time $O\left(\eta(I)^{c+1}\right) \cdot 2^{\mu(I)}$.

Algorithm mis on general graphs

- use the Combine Analysis Lemma with $A=B=\mathbf{m i s}, c=2, \mu(G)=0.35805 n, \mu^{\prime}(G)=\sum_{i=1}^{5} w_{i} n_{i}$, and $\eta(G)=n$
- for every instance $G, \mu^{\prime}(G) \leq \mu(G)$ because $\forall i, w_{i} \leq 0.35805$
- for each $d \geq 6$,

$$
(0.35805,(d+1) \cdot 0.35805) \leq 1
$$

- Thus, Algorithm mis has running time $O\left(1.2817^{n}\right)$ for graphs of arbitrary degrees

2.6 Structures that arise rarely

Rare Configurations

- Branching on a local configuration C does not influence overall running time if C is selected only a constant number of times on the path from the root to a leaf of any search tree corresponding to the execution of the algorithm
- Can be proved formally by using measure

$$
\mu^{\prime}(I):= \begin{cases}\mu(I)+c & \text { if } C \text { may be selected in the current subtree } \\ \mu(I) & \text { otherwise. }\end{cases}
$$

Avoid branching on regular instances in mis

else
Select $v \in V$ such that
(1) v has maximum degree, and
(2) among all vertices satisfying (1), v has a neighbor of minimum degree return $\max (1+\operatorname{mis}(G-N[v]), \operatorname{mis}(G-v))$

New measure:

$$
\mu^{\prime}(G)=\mu(G)+\sum_{d=3}^{5}[G \text { has a } d \text {-regular subgraph }] \cdot C_{d}
$$

where $C_{d}, 3 \leq d \leq 5$, are constants. The Iverson bracket $[F]=\left\{\begin{array}{l}1 \text { if } F \text { true } \\ 0 \text { otherwise }\end{array}\right.$

Resulting Branching numbers

For each $d, 3 \leq d \leq 5$ and all $p_{i}, 2 \leq i \leq d$ such that $\sum_{i=2}^{d} p_{i}=d$ and $p_{d} \neq d$,

$$
\left(w_{d}+\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right), w_{d}+\sum_{i=2}^{d} p_{i} \cdot w_{i}+h_{d}\right) .
$$

All these branching numbers are at most 1 with the optimal set of weights

Result

i	w_{i}	h_{i}
1	0	0
2	0.207137	0.207137
3	0.322203	0.115066
4	0.343587	0.021384
5	0.347974	0.004387

Thus, the modified Algorithm mis has running time $O\left(2^{0.3480 \cdot n}\right)=O\left(1.2728^{n}\right)$.
Current best algorithm for MIS: $O\left(1.1996^{n}\right)$ [Xia, Nagamochi '13]

2.7 State Based Measures

State based measures

- "bad" branching always followed by "good" branchings
- amortize over branching numbers

$$
\mu^{\prime}(I):=\mu(I)+\Psi(I)
$$

where $\Psi: \mathcal{I} \rightarrow \mathbb{R}^{+}$depends on global properties of the instance.

3 Max 2-CSP

Max 2-CSP generalizes Maximum Independent Set

```
MAx 2-CSP
```

Input: A graph $G=(V, E)$ and a set S of score functions containing

- a score function $s_{e}:\{0,1\}^{2} \rightarrow \mathbb{N}_{0}$ for each edge $e \in E$,
- a score function $s_{v}:\{0,1\} \rightarrow \mathbb{N}_{0}$ for each vertex $v \in V$, and
- a score "function" $s \emptyset:\{0,1\}^{0} \rightarrow \mathbb{N}_{0}$ (which takes no arguments and is just a constant convenient for bookkeeping).

Output: The maximum score $s(\phi)$ of an assignment $\phi: V \rightarrow\{0,1\}$:

$$
s(\phi):=s_{\emptyset}+\sum_{v \in V} s_{v}(\phi(v))+\sum_{u v \in E} s_{u v}(\phi(u), \phi(v)) .
$$

4 Further Reading

- Chapter 2, Branching in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
- Chapter 6, Measure 8 Conquer in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
- Chapter 2, Branching Algorithms in Serge Gaspers. Exponential Time Algorithms: Structures, Measures, and Bounds. VDM Verlag Dr. Mueller, 2010.

