Exercise sheet 5b
 COMP6741: Parameterized and Exact Computation

Serge Gaspers

19T3

Exercise 1. Suppose there exists a $O^{*}\left(1.2^{n}\right)$ time algorithm, which, given a graph G on n vertices, computes the size of a largest independent set of G.

Design an algorithm, which, given a graph G, finds a largest independent set of G in time $O^{*}\left(1.2^{n}\right)$.
Exercise 2. Let A be a branching algorithm, such that, on any input of size at most n its search tree has height at most n and for the number of leaves $L(n)$, we have

$$
L(n)=3 \cdot L(n-2)
$$

Upper bound the running time of A, assuming it spends only polynomial time at each node of the search tree.
Exercise 3. Same question, except that

$$
L(n) \leq \max \left\{\begin{array}{l}
2 \cdot L(n-3) \\
L(n-2)+L(n-4) \\
2 \cdot L(n-2) \\
L(n-1)
\end{array}\right.
$$

Exercise 4 (昀). Consider the Max 2-CSP problem

```
MAx 2-CSP
    Input: A graph G}=(V,E)\mathrm{ and a set S of score functions containing
```

 - a score function \(s_{e}:\{0,1\}^{2} \rightarrow \mathbb{N}_{0}\) for each edge \(e \in E\),
 - a score function \(s_{v}:\{0,1\} \rightarrow \mathbb{N}_{0}\) for each vertex \(v \in V\), and
 - a score "function" \(s_{\emptyset}:\{0,1\}^{0} \rightarrow \mathbb{N}_{0}\) (which takes no arguments and is just a constant conve-
 nient for bookkeeping).
 Output: The maximum score $s(\phi)$ of an assignment $\phi: V \rightarrow\{0,1\}$:

$$
s(\phi):=s_{\emptyset}+\sum_{v \in V} s_{v}(\phi(v))+\sum_{u v \in E} s_{u v}(\phi(u), \phi(v)) .
$$

1. Design simplification rules for vertices of degree ≤ 2.
2. Using the simple analysis, design and analyze an $O^{*}\left(2^{m / 4}\right)$ time algorithm, where $m=|E|$.
3. Use the measure $\mu:=w_{e} \cdot m+\left(\sum_{v \in V} w_{d_{G}(v)}\right)$ to improve the analysis to $O^{*}\left(2^{m / 5}\right)$.
