13. Review

COMP6741: Parameterized and Exact Computation

Serge Gaspers ${ }^{12}$
${ }^{1}$ School of Computer Science and Engineering, UNSW Australia
${ }^{2}$ Optimisation Resarch Group, NICTA

Semester 2, 2015

Outline

(1) Review

- Upper Bounds
- Lower Bounds
(2) Research in Parameterized and Exact Computation

Outline

(1) Review

- Upper Bounds
- Lower Bounds

(2) Research in Parameterized and Exact Computation

Outline

(1) Review

- Upper Bounds
- Lower Bounds

(2) Research in Parameterized and Exact Computation

Dynamic Programming across Subsets

- very general technique
- uses solutions of subproblems
- typically stored in a table of exponential size

Analysis of Branching Algorithm

Lemma 1 (Measure Analysis Lemma)

Let

- A be a branching algorithm
- $c \geq 0$ be a constant, and
- $\mu(\cdot), \eta(\cdot)$ be two measures for the instances of A,
such that on input I, A calls itself recursively on instances I_{1}, \ldots, I_{k}, but, besides the recursive calls, uses time $O\left(|I|^{c}\right)$, such that

$$
\begin{align*}
(\forall i) \quad \eta\left(I_{i}\right) & \leq \eta(I)-1 \text {, and } \tag{1}\\
2^{\mu\left(I_{1}\right)}+\ldots+2^{\mu\left(I_{k}\right)} & \leq 2^{\mu(I)} . \tag{2}
\end{align*}
$$

Then A solves any instance I in time $O\left(\eta(I)^{c+1}\right) \cdot 2^{\mu(I)}$.

Inclusion-Exclusion

Theorem 2 (IE-theorem - intersection version)

Let $U=A_{0}$ be a finite set, and let $A_{1}, \ldots, A_{k} \subseteq U$.

$$
\left|\bigcap_{i \in\{1, \ldots, k\}} A_{i}\right|=\sum_{J \subseteq\{1, \ldots, k\}}(-1)^{|J|}\left|\bigcap_{i \in J} \overline{A_{i}}\right|,
$$

where $\overline{A_{i}}=U \backslash A_{i}$ and $\bigcap_{i \in \emptyset}=U$.

Theorem 3

The number of covers with k sets and the number of ordered partitions with k sets of a set system (V, H) can be computed in polynomial space and
(1) $O^{*}\left(2^{n}|H|\right)$ time if H can be enumerated in $O^{*}(|H|)$ time and poly space,
(2) $O^{*}\left(3^{n}\right)$ time if membership in H can be decided in polynomial time, and
($\sum_{j=0}^{n}\binom{n}{j} T_{H}(j)$ time if there is a $T_{H}(j)$ time poly space algorithm to count for any $W \subseteq V$ with $|W|=j$ the number of sets $S \in H$ st. $S \cap W=\emptyset$.

Main Complexity Classes

P: class of problems that can be solved in time $n^{O(1)}$
FPT: class of problems that can be solved in time $f(k) \cdot n^{O(1)}$
W[•]: parameterized intractability classes
XP: class of problems that can be solved in time $f(k) \cdot n^{g(k)}$

$$
\mathrm{P} \subseteq \mathrm{FPT} \subseteq \mathrm{~W}[1] \subseteq \mathrm{W}[2] \cdots \subseteq \mathrm{W}[P] \subseteq \mathrm{XP}
$$

Known: If $\mathrm{FPT}=\mathrm{W}[1]$, then the Exponential Time Hypothesis fails, i.e. 3-SAT can be solved in time $2^{o(n)}$.

Kernelization: definition

Definition 4

A kernelization for a parameterized problem Π is a polynomial time algorithm, which, for any instance I of Π with parameter k, produces an equivalent instance I^{\prime} of Π with parameter k^{\prime} such that $\left|I^{\prime}\right| \leq f(k)$ and $k^{\prime} \leq f(k)$ for a computable function f.
We refer to the function f as the size of the kernel.

Search trees

Recall: A search tree models the recursive calls of an algorithm. For a b-way branching where the parameter k decreases by a at each recursive call, the number of nodes is at most $b^{k / a} \cdot(k / a+1)$.

If k / a and b are upper bounded by a function of k, and the time spent at each node is FPT (typically, polynomial), then we get an FPT running time.

Tree decompositions (by example)

- A graph G

- A tree decomposition of G

Conditions: covering and connectedness.

Iterative Compression

For a minimization problem:

- Compression step: Given a solution of size $k+1$, compress it to a solution of size k or prove that there is no solution of size k
- Iteration step: Incrementally build a solution to the given instance by deriving solutions for larger and larger subinstances
- Often, we can get a solution of size $k+1$ with only a polynomial overhead

Outline

(1) Review

- Upper Bounds
- Lower Bounds

(2) Research in Parameterized and Exact Computation

Reductions

We have seen several reductions, which, for an instance (I, k) of a problem Π, produce an equivalent instance I^{\prime} of a problem Π^{\prime}.

	time	parameter	special features	used for
kernelization	poly	$k^{\prime} \leq g(k)$	$\begin{aligned} & \left\|I^{\prime}\right\| \leq g(k) \\ & \Pi=\Pi^{\prime} \end{aligned}$	$g(k)$-kernels
parameterized reduction	FPT	$k^{\prime} \leq g(k)$		W[]-hardness
OR-composition	poly	$k^{\prime} \leq \operatorname{poly}(k)$	$\Pi=\mathrm{OR}\left(\Pi^{\prime}\right)$	Kernel LBs
AND-composition	poly	$k^{\prime} \leq \operatorname{poly}(k)$	$\Pi=\operatorname{AND}\left(\Pi^{\prime}\right)$	Kernel LBs
polynomial parame-	poly	$k^{\prime} \leq \operatorname{poly}(k)$		Kernel LBs
ter transformation				(S)ETH LBs
SubExponential Reduction Family	subexp (k)	$k^{\prime} \in O(k)$	Turing reduction $\left\|I^{\prime}\right\|=\|I\|^{O(1)}$	ETH LBs

Outline

(1) Review

- Upper Bounds - Lower Bounds
(2) Research in Parameterized and Exact Computation

News

- Biclique has been solved (the first Open problem among "The Most Infamous" in [Downey Fellows, 2013]): it is W[1]-hard [Lin, SODA 2015]
- research focii
- enumeration algorithms and combinatorial bounds
- randomized algorithms
- backdoors
- treewidth: computation, bounds on the treewidth of grid or planar subgraphs / minors
- bidimensionality
- bottom-up: improving the quality of subroutines of heuristics
- (S)ETH widely used now, also for poly-time lower bounds
- quests for multivariate algorithms, lower bounds for Turing kernels
- FPT-approximation algorithms

Resources

- FPT wiki: http://fpt.wikidot.com
- FPT newsletter: http://fpt.wikidot.com/fpt-news:
the-parameterized-complexity-newsletter
- Blog: http://fptnews.org
- cstheory stackexchange: http://cstheory.stackexchange.com
- FPT school 2014: http://fptschool.mimuw.edu.pl

